
 

School of Computing 

Faculty of Engineering 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 

 

 

SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE 

SUBJECT CODE: SCSR/SECR 2033 

SEMESTER: 2019/20-2 

LAB TITLE: Programming 3a: Flags, OFFSET, Arrays, JMP, LOOP 

INSTRUCTION: Answer all questions. 

STUDENT INFO : 

 

 

 

Name:  SEE WEN XIANG 

Matric No: A19EC0206  Section:  07 

Email:   wxsee@graduate.utm.my 

 

SUBMISSION DATE: 

 

29/04/2020 (Thu) 

 



Part A – Programming review 

 

Flags Affected by Arithmetic 

 

• The ALU has a number of status flags that reflect the outcome of 
arithmetic (and bitwise) operations 

o based on the contents of the destination operand  
• Essential flags: 

 
o Zero flag – set when destination equals zero o 
Sign flag – set when destination is negative 

o Carry flag – set when unsigned value is out of range 

o Overflow flag – set when signed value is out of range  

• The MOV instruction never affects the flags. 

 

Zero Flag (ZF) 

• The Zero flag is set when the result of an operation produces zero in the 

destination operand.   

mov ax,2   

sub ax,1 ; AX = 1, ZF = 0 

mov cx,1   

sub cx,1 ; CX = 0, ZF = 1 

mov ax,0FFFFh  

inc ax ; AX = 0, ZF = 1 

inc ax ; AX = 1, ZF = 0 

 

Sign Flag (SF)  
• The Sign flag is set when the destination operand is negative. The flag is 

clear when the destination is positive. 
mov cx,0  
sub cx,1 ; CX = -1, SF = 1  
add cx,2 ; CX = 1, SF = 0  

• The sign flag is a copy of the destination's highest bit: 
mov al,0 

sub al,1 ; AL = 11111111b, SF = 1  

add al,2 ; AL = 00000001b, SF = 0 

 

Overflow and Carry Flags: A Hardware Viewpoint 

 

• How the ADD instruction modifies OF and CF: 

o OF = (carry out of the MSB) XOR (carry into the MSB) 
o CF = (carry out of the MSB)  

• How the SUB instruction modifies OF and CF: 

o NEG the source and ADD it to the destination 
hkm/S11415 

 

COMMENTS: 

 



 
o OF = (carry out of the MSB) XOR (carry into the MSB)  
o CF = INVERT (carry out of the MSB) 

 

MSB = Most Significant Bit (high-order bit) 

XOR = eXclusive-OR operation  
NEG = Negate (same as SUB 0,operand) 

 

 

Carry Flag (CF) 
 

• The Carry flag is set when the result of an operation generates an unsigned value 
that is out of range (too big or too small for the 

 
destination operand). mov 
al,0FFh  
add al,1 ; CF = 1, AL = 00 

 

; Try to go below zero: 

 

mov al,0 

sub al,1 ; CF = 1, AL = FF 

 

Overflow Flag (OF) 
 

• The Overflow flag is set when the signed result of an operation is invalid or out 
of range.  

; Example 1 

mov al,+127  
add al,1 ; OF = 1, AL = 80h 

 

; Example 2 

mov al,7Fh 

add al,1 ; OF = 1, AL = 80h 
 

• The two examples are identical at the binary level because 7Fh equals +127. To 
determine the value of the destination operand, it is often easier to calculate in 
hexadecimal. 
 

**NOTE: In VisualStudio Register Window during Step Over, you will find 

that the flag registers are presented with a different name. 
 

Overflow Flag (OF) = OV 

Zero Flag (ZF) = ZR 

Sign Flag (SF) = PL 

Parity Flag (PF) = PE 

Carry Flag (CF) = CY 

Auxiliary Flag (AF) = AC 
 

 

hkm/S11415 



OFFSET Operator 

 

• OFFSET returns the distance in bytes, of a label from the beginning 
of its enclosing segment  

o Protected mode: 32 
bits o Real mode: 16 
bits  

• OFFSET gives you the address where the variable (or an array) starts. 

 

offset 

 

Data segment: 

 

myByte 
 

 

• Example:  Let's assume that the data segment begins at 00404000h: 
 

 

   .data       

   bVal BYTE 10h       

   wVal WORD 1000h       

   dVal DWORD 10001000h     

   dVal2 DWORD ?       

   .code       

  mov esi,OFFSET bVal   ; ESI = 00404000   

  mov ah, bVal   ; AH = 10h   

  mov esi,OFFSET wVal   ; ESI = 00404001   

  mov ax, wVal   ; AX = 1000h   

  mov esi,OFFSET dVal   ; ESI = 00404003   

  mov eax, dVal   ; EAX = 10001000h   

  mov esi,OFFSET dVal2 ; ESI = 00404007   

         

            
 00404000 00404001 00404003 00404007  
            

            

            

            
 

bVal wVal dVal dVal2 

 
+1 +2 +4 

 

 

**TIP: Note the different outcomes in the MOV instructions with and without the use 
of OFFSET. 
 

 

hkm/S11415 



Arrays 

 

• Arrays are probably the most commonly used composite data type. 

• Analogy: 
 

o An array is like a drawer that holds many items of the same type. Like 
a sock drawer that have 10 different pairs of socks, and you can reach 
these socks from that drawer.  

• Defining an array: 

o Must have array name, size of each item in array, initialize (or not ) the 
values of these items o Example: 

 

Array1 byte 10h, 20h, 35h    

; 3 items in array, each 1 byte in size   

Array2 word 25h, 1A20h, 66h, 891h    

; 4 items in array, each 2 bytes in size   

Array3 word 4 dup (0)        

; 4 items in array, each 2 bytes , and initialized to 0 
           

           

 Array1 10h 20h  35h      
           

        

 Array2 0025h  1A20h  0066h 0891h  
             

 

• Handling an array: 
 

o Use register as a pointer, the method is called indirect addressing. 
 

o Traversing an array (i.e. moving through an array), the pointer must 
be incremented following the array type (byte [+1] or word [+2] or 
dword[+4]).  

• Example: 

 
.data 

 
Array1 byte 10h, 20h, 35h ;Array1 starts at address 

404000 

Array2 word 25h, 1A20h, 66h, 891h 

 
.code main 
PROC 

 
; Calling array method 1 

 
mov esi,OFFSET Array1 ; ESI = 00404010 

mov al, [esi] ; AL = 10h  

add esi,1 ; ESI = 00404001 

mov bl, [esi] ; BL = 20h  

mov esi,OFFSET Array2 ; ESI = 00404003 

mov ax, [esi] ; AX = 0025h 

add esi,2 ; ESI = 00404005 

mov bx, [esi] ; BX = 1A20h 
hkm/S11415 



 

 

; Calling array 

method 2 

mov al, Array1 ; AL = 10h 

mov bl, Array1+1 ; BL = 20h 

mov ax, Array2 ; AX = 0025h 

mov bx, Array2+2 ; BX = 1A20h 
 
 
 

 

**TIP: You can also use TYPE <array name> to match the array type.  
Example: mov bl, Array1+type Array1; BL = 20h 

 

• Example: Sum an array 

 

.data 

 

Array1 byte 10h, 20h, 35h 

Array2 word 25h, 1A20h, 66h, 891h 

 

.code main 
PROC 

 

;Sum an array  

mov al, Array1 ; AL = 10h 

add al, Array1+1 ; AL = 30h 

add al, Array1+2 ; AL = 65h 

mov bx, Array2 ; BX = 0025h 

add bx, Array2+2 ; BX = 1A45h 

add bx, Array2+4 ; BX = 1AABh 

add bx, Array2+6 ; BX = 233Ch 

 

Jump 

 

• To jump here means to relocate the instruction pointer to a different address, 
one that is not sequential (i.e. not the next one).  

• Jumps can be 
o Conditional: jump when a condition(s) is met; if not met don’t jump. 

Conditions can be flags, arithmetic results, etc. 
▪ Example: JNZ (Jump Not Zero), JE (Jump Equal), JB (Jump Below)

 

o Unconditional: no conditions, you MUST jump  
▪ Example: JMP

 
 

• Let’s explore unconditional jumps with JMP 
• The JMP command causes unconditional transfer to a destination (label) that is 

usually within the same procedure. 

 

hkm/S11415 



o The command format is JMP destination 

o The destination is a label 

o When this command is executed, the instruction pointer (EIP) 
 

will now point to the address where the label (or the destination) is.  
0001 MOV AX,10 

0002 

0003 HERE:  
0004 INC AX 

 
0005 JMP HERE 

0006 ADD AX,2 

 

▪
 When the command INC AX is executed, EIP points to 0005. 

 
▪

 When the command JMP HERE is executed, EIP will now point to 0003 rather 
than 0006 

▪
 The problem here: this is an endless loop 

 
• Let’s explore a conditional jump example with JNZ. o The format is 

the same as unconditional jump. 
o  JNZ 

➔
 jump to a label if the Zero flag is clear [ZF = 0]  

o In the example below, once the Zero Flag is set [ZF = 1], the condition for 
JNZ is not met; so it will not be done. EIP will point to 0006. 

 

0001 MOV AX,10 

0002  

0003 HERE: 

0004 DEC AX 

0005 JNZ HERE 

0006 ADD AX,2 
  

 

• Please do explore the different conditional jumps that are available to you.  
o Conditional jumps are usually accompanied with a compare (CMP) 

command. 
o More of these in upcoming labs. 

 

LOOP 

 

• As the name implies, the LOOP instruction will repeatedly execute a block of 
statements.  

• The number of time the looping will occur is held in a counter. In a 32-bit mode, the 
counter is the register ECX.  

• The loop instruction decrements register ECX and compares it with 0 leaving the flags 
unchanged.  

o If new ECX ≠ 0, jumps to the label. 

o Else, the program execution continues with the next instruction. 

• The command format is LOOP destination 

o The destination is a label 

 
hkm/S11415 



• Example: try and trace the program below. 

 

.code 
main PROC 

 

mov eax,10h 

mov ecx, 4 ; ecx is the counter  
L1: 

add eax,2 ; eax = eax + 2 

loop L1 ; ecx = ecx -1; go to L1 if ECX ≠ 0 

 

 exit    

 main ENDP    

 END main    

     

     

 ECX  EAX  

 4 (initial value)  10h (initial value)  

  add eax,2 12h  

 3 loop L1 
→
 go to L1   

  add eax,2 14  

 2 loop L1 
→
 go to L1   

  add eax,2 16  

 1 loop L1 
→
 go to L1   

  add eax,2 18  

0 loop L1 
→
 Stop 

 

• You can do a nested loop instruction (if need be). 
 

• If you need to code a loop within a loop, you must save the outer loop 
counter's ECX value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

hkm/S11415 



Part B – Let’s do a little programming 

 

1. Given the assembly language program below, run it and list the flags’ status after 
each instruction. 

 

PROGRAM OF(OV) SF(PL) ZF(ZR) AF(AC) PF(PE) CF(CY) 

 0 0 1 0 1 0 

mov ax,10h 0 0 1 0 1 0 
 

add ax,2h 0 0 0 0 1 0 
 

sub ax,15h 0 1 0 1 0 1 
 

add ax,112 0 0 0 0 0 1 
 

neg ax 0 1 0 1 1 1 
 

mov bh,66h 0 1 0 1 1 1 
 

inc bx 0 0 0 0 0 1 
 

mul dh 1 0 0 0 1 1 
 

sub al,3 0 0 0 1 1 0 
                   

 

2. What will be the values of the Overflow flag in the program given below?  
 

mov al,80h 

add al,92h ; AL = 12h , OF = 1  
mov al,-2 

add al,+127 ; AL = 7Dh , OF = 0 

 

3. Define the following arrays: 
 

a. A byte type array named PKP with 3 items 11, 22h and 4Ah. 
 

 
 

PKP byte 11, 22h, 4Ah 
 
 
 
 

b. A word type array named ZOOM with 5 items 45, 45h, 444h, 4A4Bh and 
44Ah. 

 
 

 
ZOOM word 45, 45h, 444h, 4A4Bh, 44Ah 

 
 
 

 

c. A double-word type array named PADLET with 5 items initialized to 0 
 

 
PADLET dword 5 dup(0) 

 
 
 
 
 
 
 

hkm-mma20192020-2 



 
4. Referring to the array definitions in Question 3, state the following values 

in the register. 
 

a. MOV AL, PKP ; AL = Bh 
   

b. MOV AL, PKP+3 ; AL = 2Dh 
   

c. MOV AX, ZOOM ; AX = 002Dh 
   

d. MOV AX, ZOOM+3 ; AX = 4400h 
   

e. MOV AX, ZOOM+4 ; AX = 0444h 
   

f. MOV EAX, PADLET ; EAX = 00000000h 
   

g. MOV AH, PKP+8 ; AH = 04h 
   

 MOV EAX,0 ; EAX = 00000000h 

h. MOV AX, ZOOM+2 ; AX = 0045h 

 MOV PADLET, EAX ; PADLET = 00000045h 

 

5. Referring to the array definitions in Question 3, write the appropriate 
instruction(s) to achieve the required results. 

 

a. MOV BL, PKP+5 ; BL = 45h 

b. MOV BX, ZOOM+7 ; BX = 004Ah 

c. 

MOV EAX, 0h 

MOV AX, ZOOM+6, 

MOV PADLET+4, EAX 

; PADLET+4 = 00004A4Bh 

 

6. (video) Referring to the array definitions in Question 3, write a program 
to sum array PKP. 

 
7. (video) Referring to the array definitions in Question 3, write a program 

to sum array ZOOM. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

hkm/S11415 



 
8. (video) Study the assembly instructions given below and fill in the blanks 

(in hexadecimal). 
 

INCLUDE Irvine32.inc 

.data 

intArray WORD 100h,200h,300h,400h 

TOTAL WORD 0 

 

.code  

main PROC 

 mov edi,OFFSET intArray ; EDI = 00404000h 

 mov ecx,LENGTHOF intArray ; ECX = 00000004h 

 mov ax,0 

 

L1: 

 add ax,[edi] 

 add edi,TYPE intArray ; EDI = EDI + 2 

 loop L1 

 

 mov TOTAL, ax ; TOTAL = 0A00h 

 

exit 

 

main ENDP 

END main 

 

9. Study the assembly instructions given below and answer the following 
questions. 

mov ax,20  
mov ecx,4 

L1: 
 

inc ax 

neg ax 

loop L1 
 

 

a. How many times will the loop be executed? 4 

 

b. What is the final result of AX in hexadecimal? 14h 

 
c. Fill in the table with the value of AX after each instruction in each 

loop. 
 

Loop# INC AX NEG AX 

Initially AX = 20d 

1 0015h FFEBh 

2 FFECh 0014h 

3 0015h FFEBh 

4 FFECh 0014h 

 
 

 
hkm/S11415 



 
10. Study the assembly language code given below. What is the final value 

of the variable TOTAL?  
 

INCLUDE Irvine32.inc  
.data 

 
total dword 0 
counter dword 7 

 
.code 

main PROC 

 

mov eax,0 
 

mov ecx,counter 
L1: 

 
add eax,10h 
loop L1 

 

mov total, eax 

 
exit 
main ENDP 

 

END main 

TOTAL = 00000070h 

 
11. (video) Using the LOOP instruction, write a program to achieve the 

following equation. What is the final result of TOTAL in hexadecimal 
and decimal?  

 

TOTAL = 100h * 7h 

 

Ans: TOTAL = 00000700h = 1792d 

 

 
 

 

 
hkm/S11415 


