ASSIGNMENT 3

CHAPTER 4 – LINEAR TRANSFORMATION SECI/SCSI 1113 COMPUTATIONAL MATHEMATICS 20202021-2

- 1. Determine whether the function $T: R^2 \to R^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x y \\ x + 3y \end{bmatrix}$ is a linear transformation.
- 2. Determine whether the function $T: R^3 \to R^3$ by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x+y-z \\ 2xy \\ x+z+1 \end{bmatrix}$ is a linear transformation between vector space.
- 3. Define a linear operator $T: R^3 \rightarrow R^3$ by T(u) = Au, where $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$
 - a. Find $T(e_1)$, $T(e_2)$ and $T(e_3)$.
 - b. Find $T(3e_1 4e_2 + 6e_3)$.
- 4. Define a linear operator $T: R^2 \to R^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x 2y \\ -2x + 4y \end{bmatrix}$. Determine whether the vector $v = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is in N(T).
- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator and $B = \{v_1, v_2, v_3\}$ a basis for \mathbb{R}^3 . Suppose

$$T(v_1) = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, T(v_2) = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, T(v_3) = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$$

- a. Determine whether $w = \begin{bmatrix} -2\\1\\2 \end{bmatrix}$ is in range of T.
- b. Find a basis for R(T).
- c. Find dim(N(T))
- 6. $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear operator with B and B' ordered bases for v.

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+z \\ 2y-x \\ y+z \end{bmatrix}$$

$$B = \left\{ \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}, B' = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} \right\}, v = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$$

- a. Find the basis representation for T relative to the ordered bases B and B'.
- b. Find T(v) using a direct computation and using the matrix representation.