

SULIT

Faculty of
Computing

UNIVERSITI PENYELIDIKAN
UNIVERSITI TEKNOLOGI MALAYSIA
SEMESTER II - 2020 / 2021

ALTERNATIVE ASSESSMENT (INDIVIDUAL)

SUBJECT CODE : SCSP2753
SUBJECT NAME : DATA MINING
DATE : 23 JUNE – 1 JULY 2021
DURATION : 7 DAYS
SUBMISSION DATE : 1 JULY 2021

INSTRUCTIONS:

This alternative assessment is assessed individually.
This alternative assessment consists of **TWO** parts.
Read **ALL** questions carefully and please answer **ALL** questions.
Submit your answer (report) via e-learning and submission later than the due date is not accepted.
Any form of plagiarism is not allowed.

Name	NUR ALEEYA SYAKILA BINTI MUHAMAD SUBIAN
I/C No.	000726100810
Year / Course	2 SECP
Section	01
Lecturer Name	DR ROZILAWATI BINTI DOLLAH

Table Of Contents

1.0 PART 1	3
1.1 Introduction	3
1.1.1 Text Preprocessing	4
1.2 Data Mining Task	14
1.2.1 Supervised Learning	14
1.2.2 Unsupervised Learning Algorithm	28
2.0 PART 2	36
Reference	38

1.0 PART 1

1.1 Introduction

There are a lot of tools out there that we can use to do Preprocessing and Data Mining Task. For this alternative assessment, I will be choosing RapidMiner as my tool. This is because RapidMiner has a lot of resources that I can refer to incase of I couldn't understand or misleading concept. This alternative assessment required me to do text preprocessing and few data mining tasks. To perform any data mining algorithm, preprocess the data is a must and it must be done before proceeding with other steps. In this alternative assessment, for question 1, I will be performing text preprocessing for appendix 1 given in the question sheet. After did some research about preprocessing, I found that every basic preprocessing has the same steps which are tokenize, filter stopwords, generate n gram, filter token and stemming. While for question 2, based on the appendix 2, the dataset that is given to me is dataset 29. Before performing the supervised and unsupervised learning algorithm, I preprocess my dataset beforehand.

1.1.1 Text Preprocessing

Step 1 :

The data is in unstructured form where its format is variety such as in long text email or else. Therefore, I needed to convert it to the structured one by showing text only. To make it happened, I will be needed to do text preprocessing in RapidMiner. Firstly, I need to change the dataset from docx file into a xlsx file to make it easier for the RapidMiner to read the dataset.

Input :

APPENDIX 1

Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock.

In a pericardial tamponade model of cardiogenic shock in pigs, we had previously shown that acute reductions in cardiac output produce severe mesenteric ischemia due to disproportionate splanchnic vasoconstriction. In this study, we extended the period of cardiogenic shock in order to investigate the pathogenesis of ischemic injury to the small intestinal wall. Four hours of tamponade produced sustained changes in splanchnic hemodynamics, similar to those observed in the prior short-term experiments. The resultant mesenteric ischemia caused necrotic lesions of the small intestine which were characteristic of those seen in nonocclusive mesenteric ischemia in human subjects. Prior alpha-adrenergic blockade failed to prevent either sustained mesenteric vasospasm or ischemic injury. In contrast, prior blockade of the renin-angiotensin axis, whether by nephrectomy or angiotensin-converting enzyme inhibition, blocked the splanchnic vasoconstriction, and thereby protected the small intestine from ischemic injury. The primary hemodynamic and pathologic features of this model of nonocclusive mesenteric ischemia appear to be mediated by the renin-angiotensin axis.

Figure 1 : Raw dataset appendix 1 in docx

Output :

1 Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock. In a pericardial tamponade model of cardiogenic shock in pigs, we had previously shown that acute reductions in cardiac output produce severe mesenteric ischemia due to disproportionate splanchnic vasoconstriction. In this study, we extended the period of cardiogenic shock in order to investigate the pathogenesis of ischemic injury to the small intestinal wall. Four hours of tamponade produced sustained changes in splanchnic hemodynamics, similar to those observed in the prior short-term experiments. The resultant mesenteric ischemia caused necrotic lesions of the small intestine which were characteristic of those seen in nonocclusive mesenteric ischemia in human subjects. Prior alpha-adrenergic blockade failed to prevent either sustained mesenteric vasospasm or ischemic injury. In contrast, prior blockade of the renin-angiotensin axis, whether by nephrectomy or angiotensin-converting enzyme inhibition, blocked the splanchnic vasoconstriction, and thereby protected the small intestine from ischemic injury. The primary hemodynamic and pathologic features of this model of nonocclusive mesenteric ischemia appear to be mediated by the renin-angiotensin axis.

Figure 2 : Raw dataset appendix 1 in xlsx

Step 2 : Read Excel

After converting it to a data in xlsx file, the very first basic thing I need to do after opening the RapidMiner is to drag the ‘Read Excel’ from the Operators as the dataset is in excel file. Drag the Read Excel operator and read the dataset file.

Input :

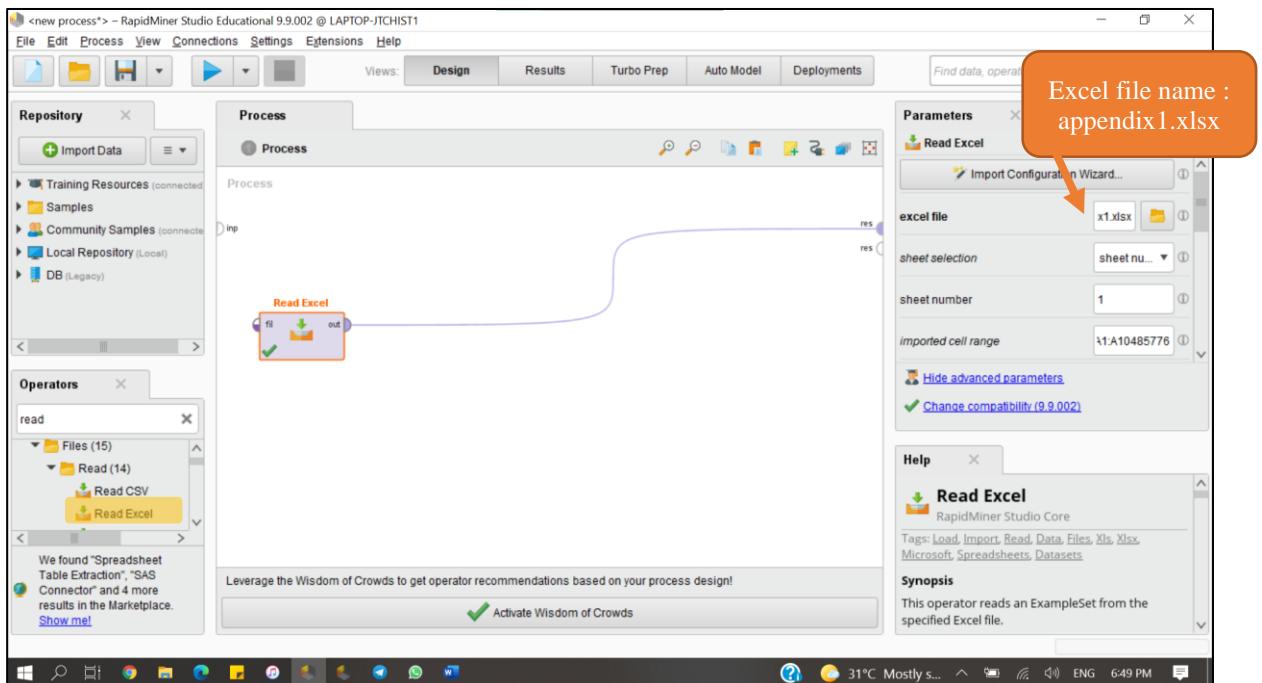


Figure 3 : Choose Read Excel operator

Output :

AA (1 results. Process results)					
Completed: Jun 23, 2021 7:55:38 PM (execution time: 0 s)					
Example Set (Read Excel)					
Result not stored in repository.					
Role	Name	Type	Range	Missings	Comment
-	A	nominal	= {Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock. In a pericardial tamponade model of cardiogenic shock in pigs, we had previously shown that acute reductions in cardiac output produce severe mesenteric ischemia due to disproportionate splanchnic vasoconstriction. In this study, we extended the period of cardiogenic shock in order to investigate the pathogenesis of ischemic injury to the small intestinal wall. Four hours of tamponade produced sustained changes in splanchnic hemodynamics, similar to those observed in the prior short-term experiments. The resultant mesenteric ischemia caused necrotic lesions of the small intestine which were characteristic of those seen in nonocclusive mesenteric ischemia in human subjects. Prior alpha-adrenergic blockade failed to prevent either sustained mesenteric vasospasm or ischemic injury. In contrast, prior blockade of the renin-angiotensin axis, whether by nephrectomy or angiotensin-converting enzyme inhibition, blocked the splanchnic vasoconstriction, and thereby protected the small intestine from ischemic injury. The primary hemodynamic and pathologic features of this model of nonocclusive mesenteric ischemia appear to be mediated by the renin-angiotensin axis.}	may contain missing values	-

Figure 4 : The result after Read Excel

Step 3 : Nominal to Text

Then I needed to drag the ‘Nominal to Text’ operators. The Nominal to Text operator converts all nominal attributes to string attributes. Drag the ‘Nominal to Text’ operator. Connect the *output* of the ‘Read Excel’ operator to the *example* of the ‘Nominal to Text’ operator. Connect the output of ‘Read Excel’ operator to the example (input) of the ‘Nominal to Text’ operator

Input :

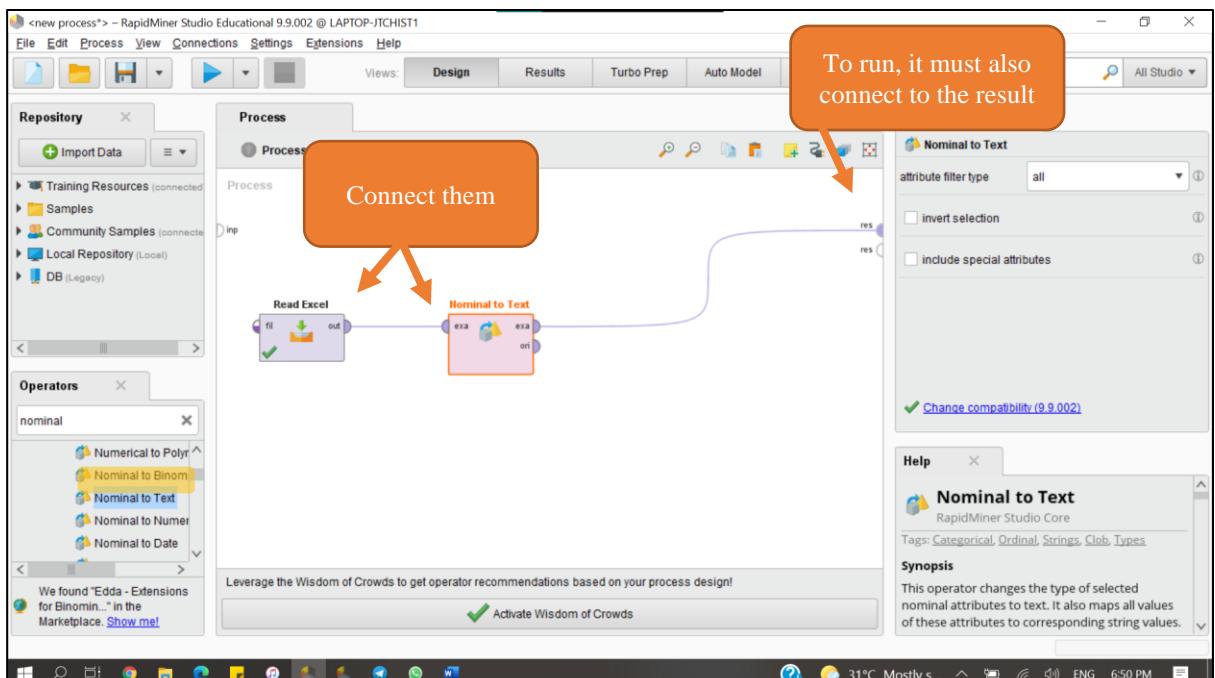


Figure 5 : Choose the Nominal to Text operator

Output :

Process (1 results. Process results)						
Completed: Jun 23, 2021 6:42:41 PM (execution time: 0 s)						
Example Set (Read Excel)						
Result not stored in repository.						
		Number of examples = 1				
		1 attribute:				
		Role	Name	Type	Range	Missing
		-	A	nominal	= {Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock. In a pericardial tamponade model of cardiogenic shock in pigs, we had previously shown that acute reductions in cardiac output produce severe mesenteric ischemia due to disproportionate splanchnic vasoconstriction. In this study, we extended the period of cardiogenic shock in order to investigate the pathogenesis of ischemic injury to the small intestinal wall. Four hours of tamponade produced sustained changes in splanchnic hemodynamics, similar to those observed in the prior short-term experiments. The resultant mesenteric ischemia caused necrotic lesions of the small intestine which were characteristic of those seen in nonocclusive mesenteric ischemia in human subjects. Prior alpha-adrenergic blockade failed to prevent either sustained mesenteric vasospasm or ischemic injury. In contrast, prior blockade of the renin-angiotensin axis, whether by nephrectomy or angiotensin-converting enzyme inhibition, blocked the splanchnic vasoconstriction, and thereby protected the small intestine from ischemic injury. The primary hemodynamic and pathologic features of this model of nonocclusive mesenteric ischemia appear to be mediated by the renin-angiotensin axis.}	Comment

Figure 6 : The result after running the Nominal to Text operator

Step 4 : Tokenize

To continue the preprocessing, I needed to add ‘Process Documents from Data’ operator first. After that, proceed to the tokenize process. Tokenization is a pre-processing strategy what breaks a stream of text into words, expressions, images, or other significant components called tokens. After clicking the ‘Process Document from Data’, drag the ‘Tokenize’ operator to proceed.

Input :

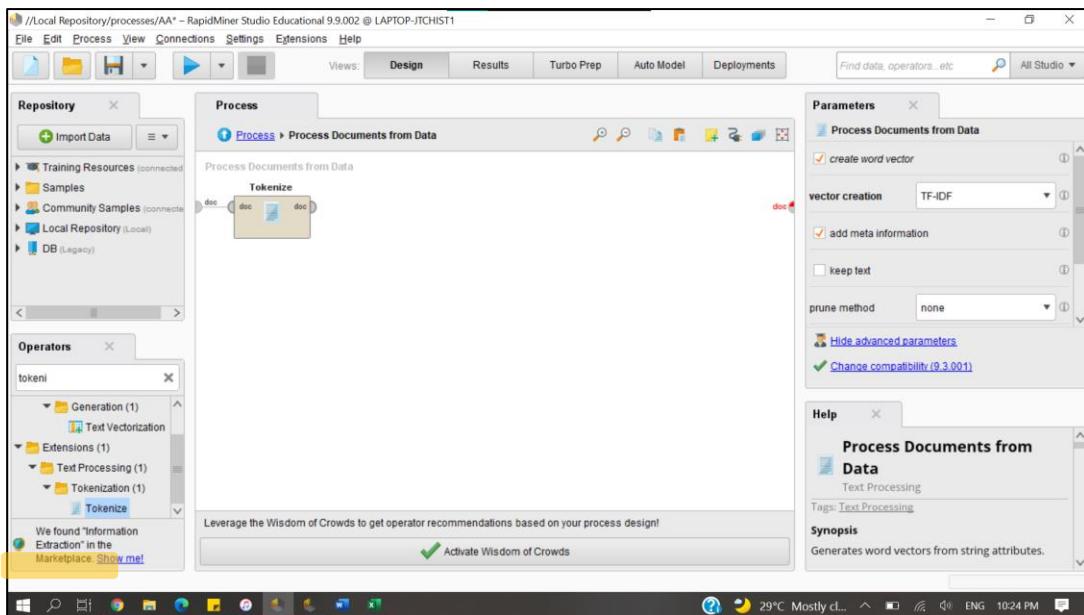


Figure 8 : Add ‘Tokenize’ operator

Output :

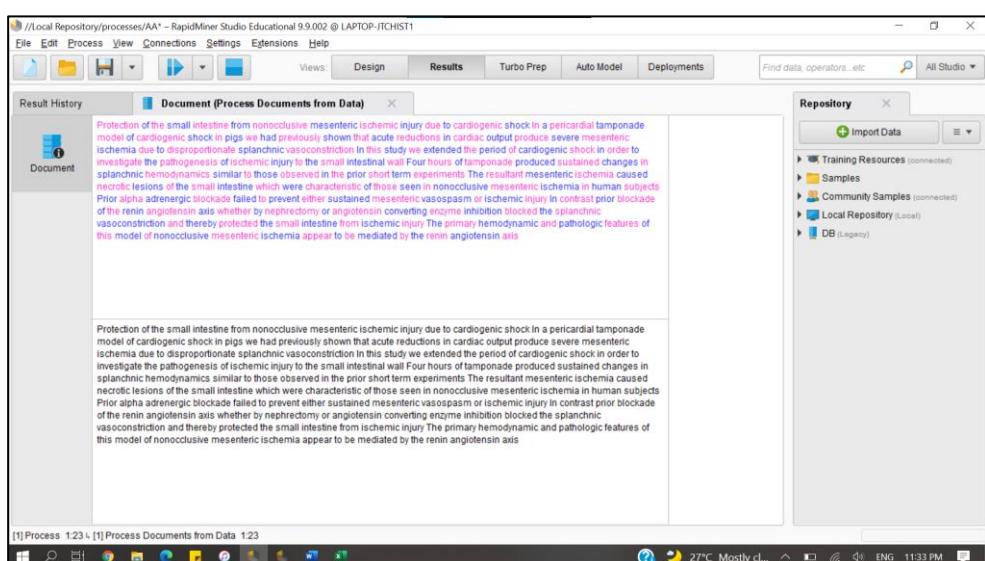


Figure 9 : The result after the execution of the tokenize step

Step 5 : Lower Cases

Then I needed to transform the dataset into lower cases. This step can help in situations where the dataset isn't exceptionally huge and fundamentally assists with consistency of anticipated output. Drag the Transform Cases operator into the process and make sure it is set to transform to lower case. After the execution, a list of lower-case words has been created. There are total of 96 words produced in the list.

Input :

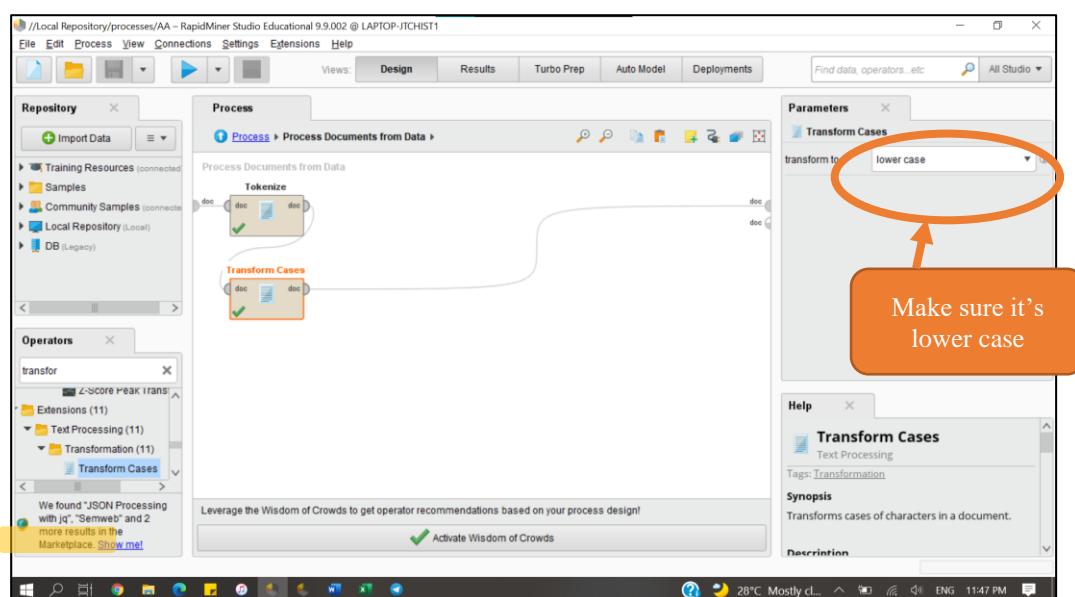


Figure 10 : Add 'Transform Cases' operator

Output :

transformcases.txt - Notepad	transformcases.txt - Notepad	transformcases.txt - Notepad	transformcases.txt - Notepad
a	failed	of	shock
acute	features	or	short
adrenergic	four	order	shown
alpha	from	output	similar
and	had	pathogenesis	small
angiotensin	hemodynamic	pathologic	splanchnic
appear	hemodynamics	pericardial	study
axis	hours	period	subjects
be	human	pigs	sustained
blockade	in	prevent	tamponade
blocked	inhibition	previously	term
by	injury	primary	that
cardiac	intestinal	prior	the
cardiogenic	intestine	produce	thereby
caused	investigate	produced	this
changes	ischemia	protected	those
characteristic	ischemic	protection	to
contrast	lesions	reductions	vasoconstriction
converting	mediated	renin	vasospasm
disproportionate	mesenteric	resultant	wall
due	model	seen	we
either	necrotic	severe	were
enzyme	nephrectomy	shock	whether
experiments	nonocclusive	short	which
extended	observed	shown	
<	<	<	<

Figure 11 : Result of transform cases process

Step 6 : Filter Stopwords

After transforming the dataset into lower cases, next step is filtering all stopwords. Stopwords are common words like “a”, “the”, “is”, “are” and etc. We removed those common words so that we can focus on important words. In this, I used the filter stopwords by dictionary and manually add a text file that contains a thousand of stopwords that has been listed. To do so, I needed to add the ‘Open File’ operator. After the execution, a list of words without stopwords has been generated and the total of words generated are 29 after going through the Filtering Stopwords process.

Input :

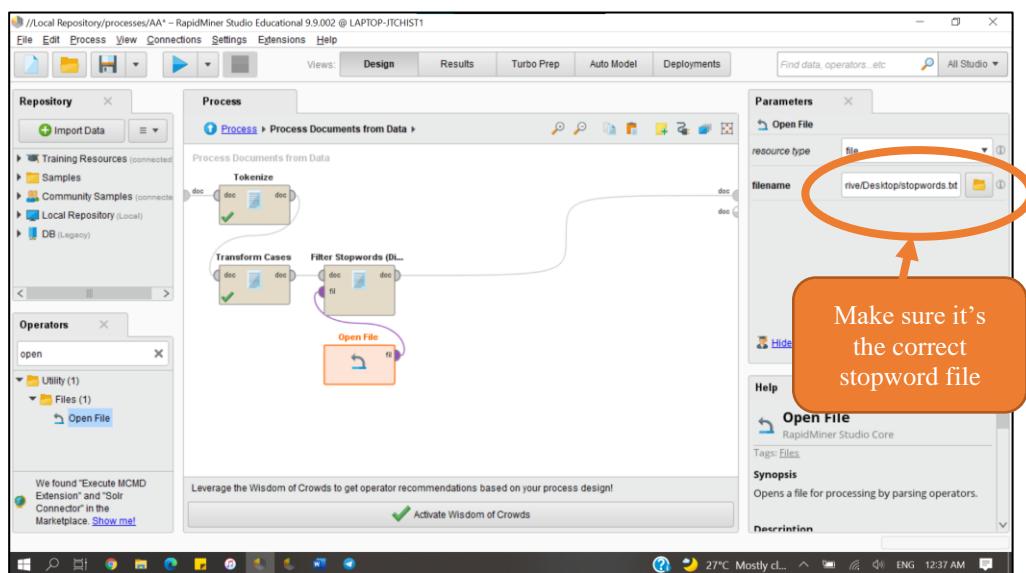


Figure 12 : Add the ‘Filter Stopword by dictionary’ operator and the stopword file manually

Output :

The screenshot shows a Notepad window titled 'stopwordsOUTPUT.txt'. The content of the window is as follows:

```
adrenergic
angiotensin
blockade
cardiogenic
converting
disproportionate
hemodynamic
hemodynamics
inhibitory
intestinal
intestine
ischemia
ischemic
lesions
mediated
mesenteric
necrotic
nephrectomy
nonocclusive
pathogenesis
pathologic
pericardial
pigs
renin
resultant
splanchnic
tamponade
vasoconstriction
vasospasm
```

Ln 29, Col 10

Figure 12 : List of words without stopwords

Step 7 : Generate n grams (terms)

Next, we need to generate n-Grams. Clearly, language has a successive nature, thus the request in which words show up in the content matters a great deal. This operator permits us to comprehend the context of a sentence regardless of whether there are a few words missing. To do this, drag the ‘Generate n-Grams’ operator onto the process.

Input :

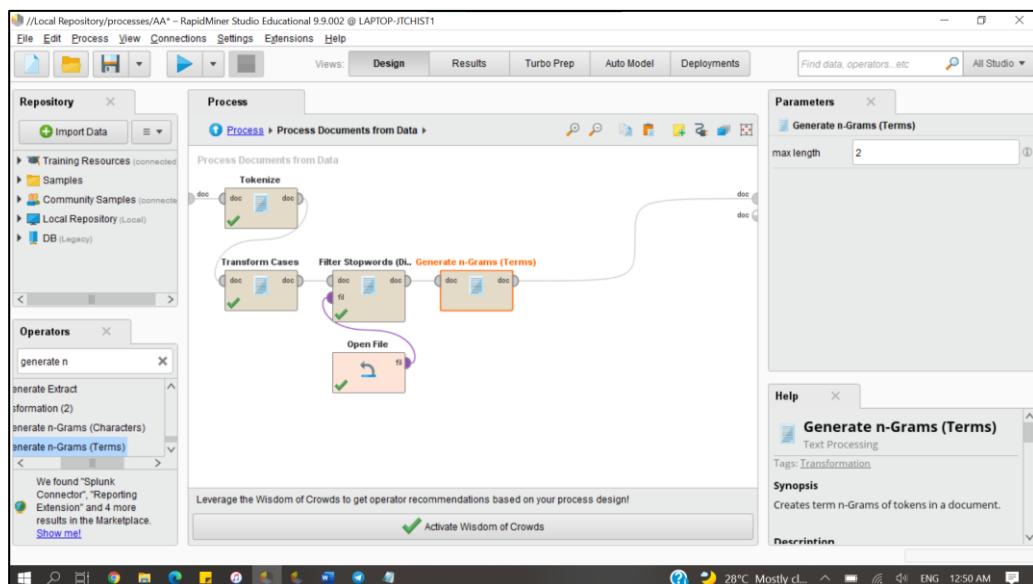


Figure 13 : Add the ‘Generate n-Gram’ operator

Output :

<p>n-Gram.txt - Notepad</p> <p>File Edit Format View Help</p> <p>adrenergic adrenergic_blockade angiotensin angiotensin_converting angiotensin_nephrectomy blockade blockade_mesenteric blockade_renin cardiogenic cardiogenic_pathogenesis cardiogenic_pericardial cardiogenic_pigs converting converting_inhibition disproportionate disproportionate_splanchnic hemodynamic hemodynamic_pathologic hemodynamics hemodynamics_resultant inhibition inhibition_splanchnic intestinal intestinal_tamponade intestine</p>	<p>n-Gram.txt - Notepad</p> <p>File Edit Format View Help</p> <p>intestine intestine_ischemic intestine_nonocclusive ischemia ischemia_adrenergic ischemia_disproportionate ischemia-mediated ischemia_necrotic ischemic ischemic_blockade ischemic_cardiogenic ischemic_hemodynamic ischemic_intestinal lesions lesions_intestine mediated mediated_renin mesenteric mesenteric_ischemia mesenteric_ischemic mesenteric_vasospasm necrotic necrotic_lesions nephrectomy nephrectomy_angiotensin</p>	<p>n-Gram.txt - Notepad</p> <p>File Edit Format View Help</p> <p>nonocclusive nonocclusive_mesenteric pathogenesis pathogenesis_ischemic pathologic pathologic_nonocclusive pericardial pericardial_tamponade pigs pigs_mesenteric renin renin_angiotensin resultant resultant_mesenteric splanchnic splanchnic_hemodynamics splanchnic_vasoconstriction tamponade tamponade_cardiogenic tamponade_splanchnic vasoconstriction vasoconstriction_cardiogenic vasoconstriction_intestine vasospasm vasospasm_ischemic</p>
<p>Ln 74, Col 19</p>	<p>Ln 74, Col 19</p>	<p>Ln 74, Col 19</p>

Figure 14 : The result after going through the Generate n-Gram process

Step 8 : Filter Tokens by POS Tags

The next step is Filter Tokens by POS Tags. A POS tag (or part-of-speech tag) is a special label assigned to each token (word) in a text corpus to indicate the part of speech and often also other grammatical categories such as tense, number (plural/singular), case etc. To complete this, drag the 'Filter Tokens by POS Tags' operator and set the expression to N.*

Input :

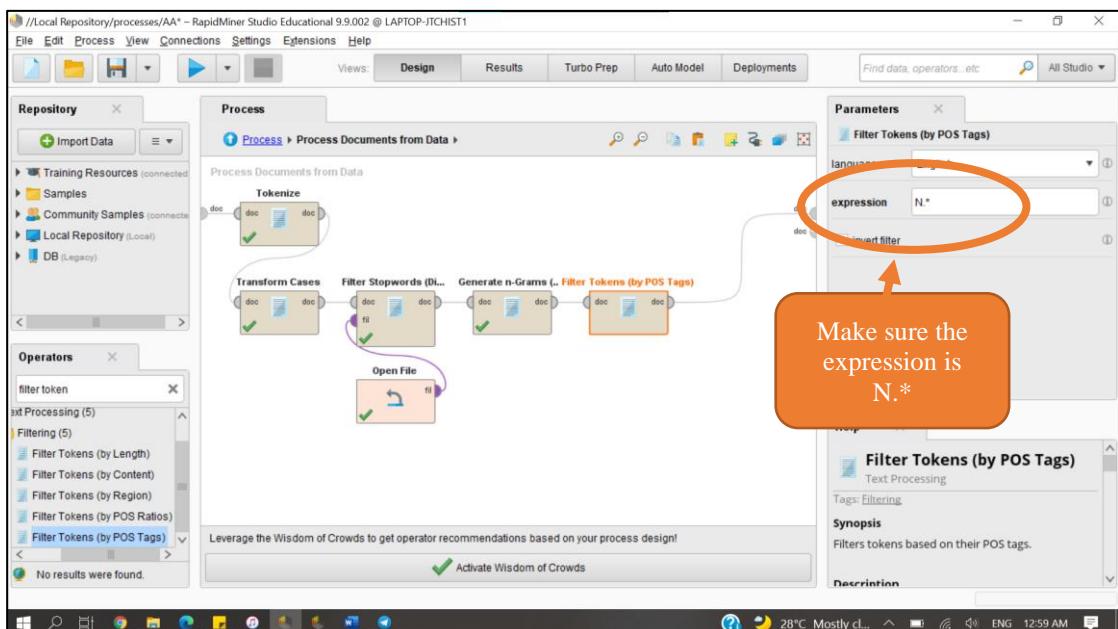


Figure 15 : Add the 'Filter Tokens by POS Tags' operator

Output :

filtertokens.txt - Notepad	filtertokens.txt - Notepad
File	File
Edit	Edit
Format	Format
View	View
Help	Help
resultant	lesions
adrenergic	lesions_intestine
adrenergic_blockade	mediated_renin
angiotensin	mesenteric
angiotensin_nephrectomy	mesenteric_ischemia
blockade	mesenteric_vasospasm
blockade_mesenteric	necrotic_lesions
blockade_renin	nephrectomy
cardiogenic	nephrectomy_angiotensin
cardiogenic_pathogenesis	pathogenesis
cardiogenic_pericardial	pathogenesis_ischemic
cardiogenic_pigs	pathologic
converting_inhibition	pathologic_nonocclusive
disproportionate_splanchnic	pericardial
hemodynamic	pericardial_tamponade
hemodynamic_pathologic	pigs
hemodynamics	pigs_mesenteric
inhibition	renin
intestinal_tamponade	renin_angiotensin
intestine	resultant
ischemia	resultant_mesenteric
ischemia_adrenergic	splanchnic_hemodynamics
ischemia_disproportionate	splanchnic_vasoconstriction
ischemic_blockade	tamponade
lesions	vasoconstriction
<	vasoconstriction_intestine
	vasospasm

Figure 16 : The list of word generated after filter token process has been executed

Step 9 : Stem (Porter)

Then, I needed to do the stemming step. The Porter stemming algorithm (or ‘Porter stemmer’) is a process for removing the commoner morphological and in flexional endings from words in English. To do this, simply drag the ‘Stem(Porter)’ operator.

Input :

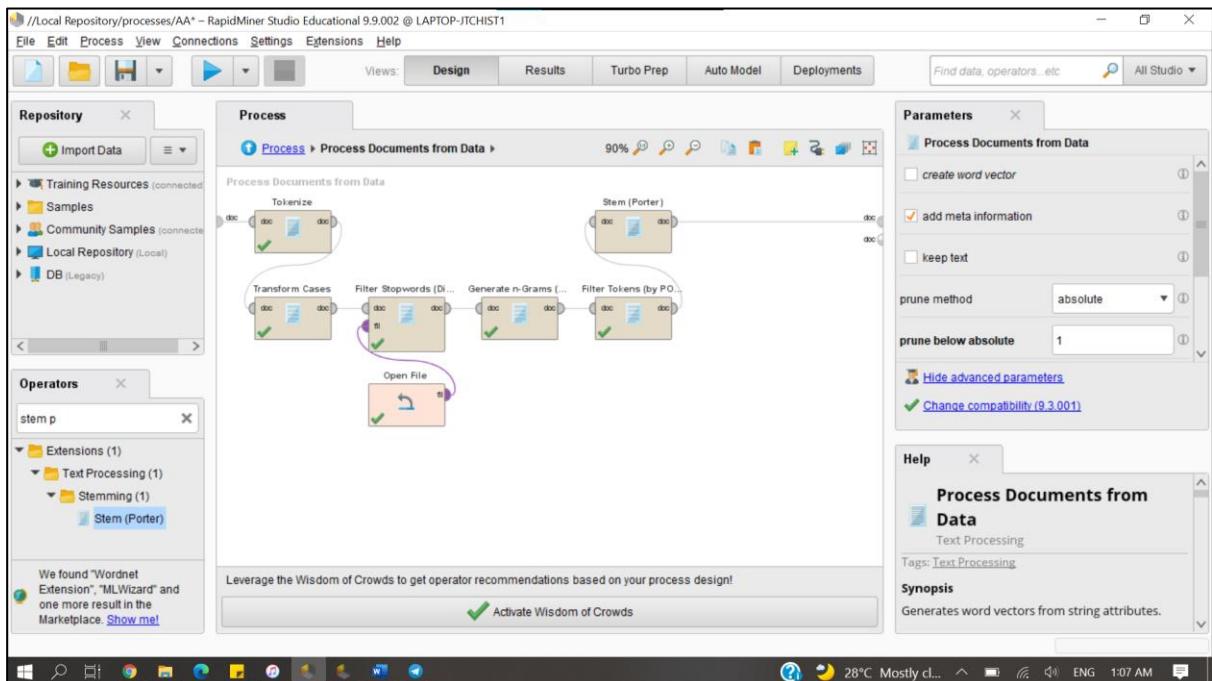


Figure 17 : Add the ‘Stem (Porter)’ operator into the process

Output :

stem.txt - Notepad	stem.txt - Notepad
File	File
Edit	Edit
Format	Format
View	View
Help	Help
_result	lesion
adrenerg	lesions_intestin
adrenergic_blockad	mediated_renin
angiotensin	mesenter
angiotensin_nephrectomi	mesenteric_ischemia
blockad	mesenteric_vasospasm
blockade_mesenter	necrotic_les
blockade_renin	nephrectomi
cardiogen	nephrectomy_angiotensin
cardiogenic_pathogenesi	pathogenesi
cardiogenic_pericardi	pathogenesis_ischem
cardiogenic_pig	patholog
converting_inhibit	pathologic_nonoclus
disproportionate_splanchn	pericardi
hemodynam	pericardial_tamponad
hemodynamic_patholog	pig
inhibit	pigs_mesenter
intestin	renin
intestinal_tamponad	renin_angiotensin
ischemia	result
ischemia_adrenerg	resultant_mesenter
ischemia_disproportion	splanchnic_hemodynam
ischemic_blockad	splanchnic_vasoconstrict
lesion	tamponad
lesions_intestin	vasoconstrict
<	vasoconstriction_intestin
	Vasospasm

Figure 18 : A list of words generated after the execution of Stem (Porter) process

Step 10 : Wordlist to Data

Input :

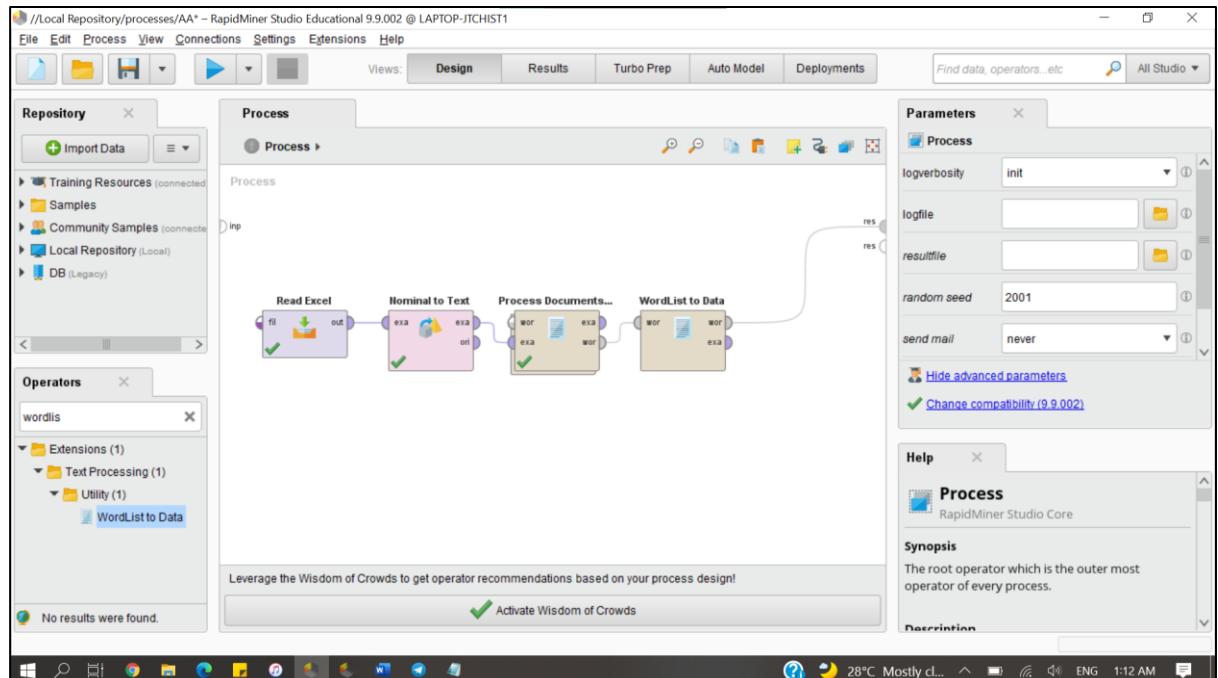


Figure 19 : Add the 'Wordlist to Data' operator

Output :

wordlist.txt - Notepad	wordlist.txt - Notepad
File	File
Edit	Edit
Format	Format
View	View
Help	Help
_result	lesion
adrenerg	lesions_intestin
adrenergic_blockad	mediated_renin
angiotensin	mesenter
angiotensin_nephrectomi	mesenteric_ischemia
blockad	mesenteric_vasospasm
blockade_mesenter	necrotic_les
blockade_renin	nephrectomi
cardiogen	nephrectomy_angiotensin
cardiogenic_pathogenesi	pathogenesi
cardiogenic_pericardi	pathogenesis_ischem
cardiogenic_pig	patholog
converting_inhibit	pathologic_nonocclus
disproportionate_splanchn	pericardi
hemodynam	pericardial_tamponad
hemodynamic_patholog	pig
inhibit	pigs_mesenter
intestin	renin
intestinal_tamponad	renin_angiotensin
ischemia	result
ischemia_adrenerg	resultant_mesenter
ischemia_disproportion	splanchnic_hemodynam
ischemic_blockad	splanchnic_vasoconstrict
lesion	tamponad
lesions intestin	vasoconstrict

Figure 20 : The final result

1.2 Data Mining Task

1.2.1 Supervised Learning

a)

The one supervised learning algorithm that I can apply for appendix 2 is Classification. There are 2 common algorithms for the supervised which are Regression and Classification. Numerical data is made of numbers and it has two more categories that falls under it which are continuous and discrete. To use the Regression, we need the data in continuous target variable. Figure below shows the example of continuous data.

x0	x1	x2	x3	x4	x5
1	1.06	9.2	151	54.4	1.6
2	0.89	10.3	202	57.9	2.2
3	1.43	15.4	113	53	3.4
4	1.02	11.2	168	56	0.3
5	1.49	8.8	192	51.2	1
6	1.32	13.5	111	60	-2.2
7	1.22	12.2	175	67.6	2.2
8	1.1	9.2	245	57	3.3
9	1.34	13	168	60.4	7.2
10	1.12	12.4	197	53	2.7
11	0.75	7.5	173	51.5	6.5
12	1.13	10.9	178	62	3.7

Figure 21 : Continuous data

While on the other hand, we also have Categorical data. Categorical data is made of words. Under it. It has two more categories which are ordinal and nominal. Classification algorithm is used to interpret the nominal data. Just like the appendix 2, it is made of words. Therefore, the most suitable supervised learning algorithm is Classification. Figure below shows an example of nominal data.

	A	B	C
1	Order ID	Product Name	Feedback
2	Order 1	Sugar	Positive
3	Order 1	Bread	Positive
4	Order 2	Sugar	Negative
5	Order 2	Bread	Positive
6	Order 2	Rice	Negative
7	Order 2	Soda	Positive
8	Order 3	Sugar	Negative
9	Order 3	Bread	Negative
10	Order 3	Rice	Negative
11	Order 3	Soda	Positive

Figure 22 : Nominal data

b)

Step 1 : Read Excel

To prepare the dataset for training, I read my dataset 29 that I already converted into an excel file by using the Read Excel operator.

Input :

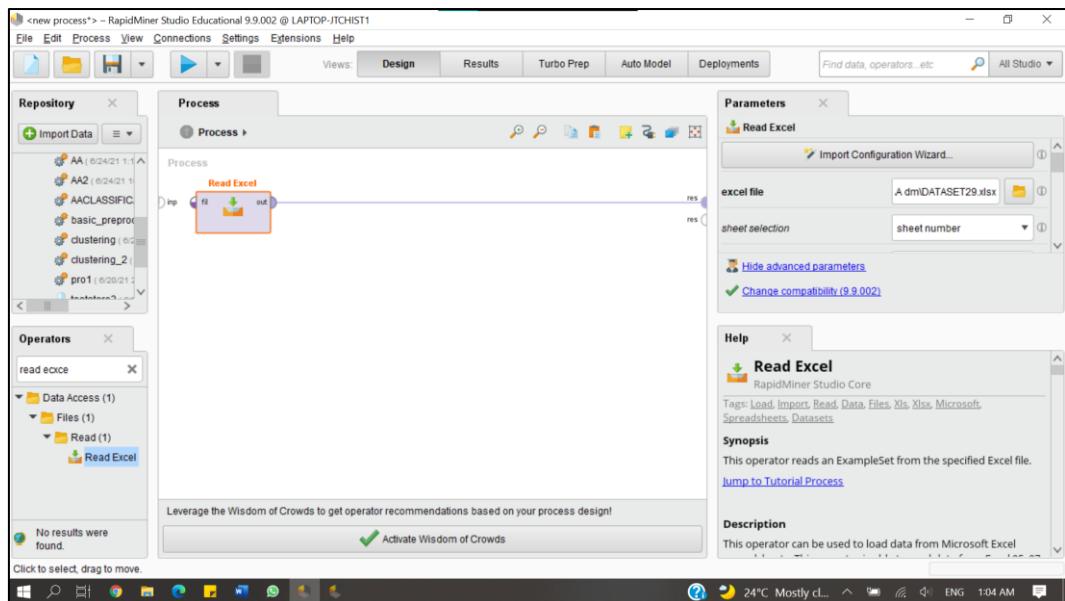


Figure 23 : Read the data from excel

Output :

Row No.	FILENAME	disease	ABSTRACT
1	13918	BRADYCARDIA	Surgical treatment of pediatric cardiac arrhyth...
2	14824	BRADYCARDIA	Comparative survival following permanent ven...
3	16526	BRADYCARDIA	Complete sinoatrial block in two patients with ...
4	275357	CORONARY DISEASE	Enhanced utilization of exogenous glucose im...
5	275546	CORONARY DISEASE	Myocardial amiodarone and desethylamiodar...
6	275547	CORONARY DISEASE	Effects of benazepril and metoprolol OROS al...
7	18126	HEART ANEURYSM	Atrial septal aneurysms in infants and children.
8	27166	HEART ANEURYSM	Submitral left ventricular aneurysms. Correctio...
9	9419	MYOCARDIAL DISEASES	Altered norepinephrine turnover and metaboli...
10	10031	MYOCARDIAL DISEASES	Pathophysiology and pathogenesis of stunned...

Figure 24 : Data that has been read using read excel

Step 2 : Nominal To Text

Next, I added the Nominal to Text operator. The Nominal to Text operator converts all nominal attributes to string attributes.

Input :

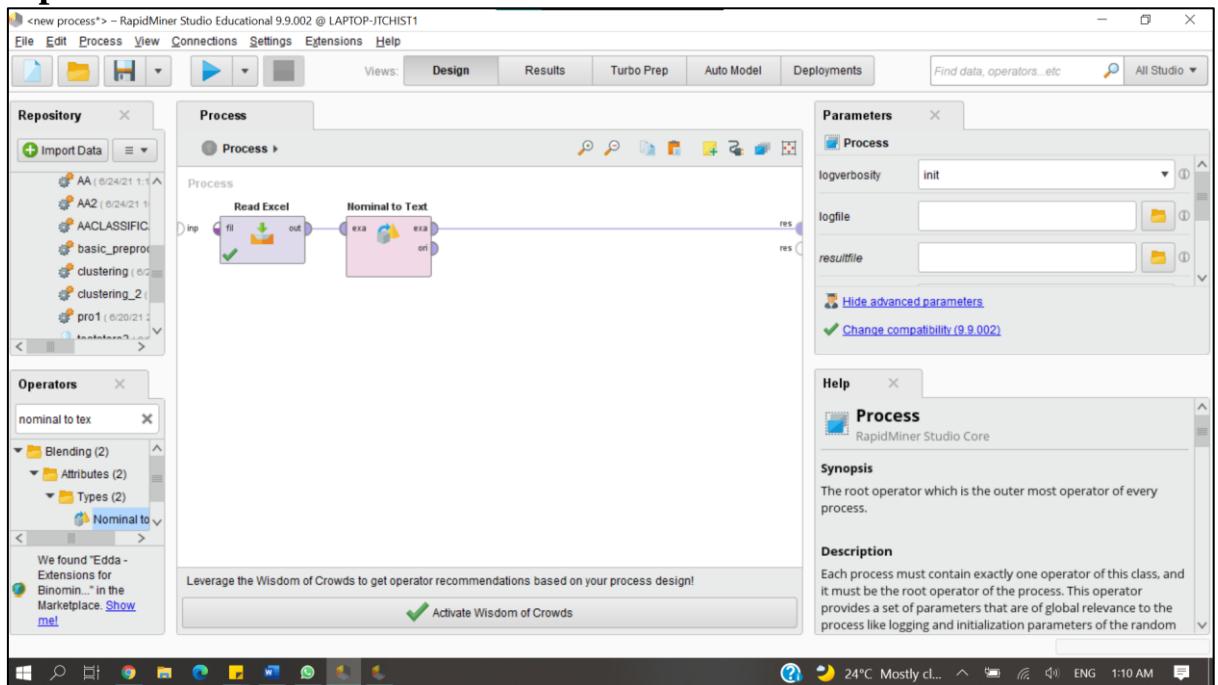


Figure 25 : Add the Nominal To Text operator

Output :

Row No.	FILENAME	disease	ABSTRACT
1	13918	BRADYCARDIA	Surgical treatment of pediatric cardiac arrhyth...
2	14824	BRADYCARDIA	Comparative survival following permanent ven...
3	16526	BRADYCARDIA	Complete sinoatrial block in two patients with ...
4	275357	CORONARY DISEASE	Enhanced utilization of exogenous glucose im...
5	275546	CORONARY DISEASE	Myocardial amiodarone and desethylamiodar...
6	275547	CORONARY DISEASE	Effects of benazepril and metoprolol OROS al...
7	18126	HEART ANEURYSM	Atrial septal aneurysms in infants and children.
8	27166	HEART ANEURYSM	Submitral left ventricular aneurysms. Correctio...
9	9419	MYOCARDIAL DISEASES	Altered norepinephrine turnover and metaboli...
10	10031	MYOCARDIAL DISEASES	Pathophysiology and pathogenesis of stunned...

Figure 26 : The data after has changed to text

Step 3 : Select Attribute

Next, I will select the attributes. From here I selected ABSTRACT and disease as the chosen attributes.

Input :

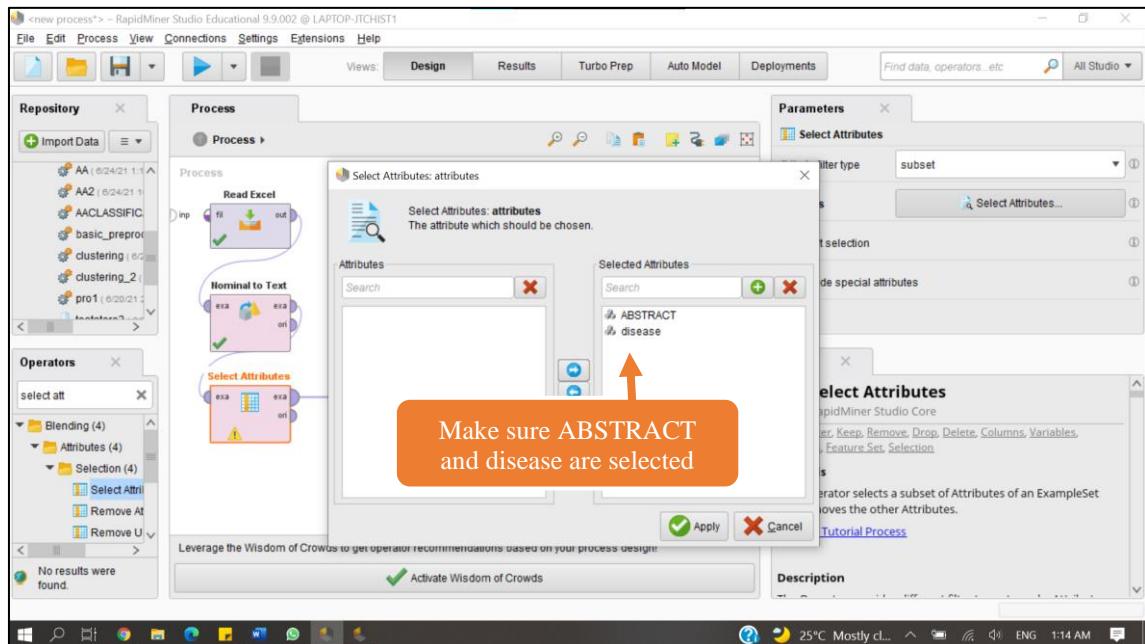


Figure 27 : Select Attribute

Output :

Row No.	disease	ABSTRACT
1	BRADYCARDIA	Surgical treatment of pediatric cardiac arrhythmia.
2	BRADYCARDIA	Comparative survival following permanent ventricul...
3	BRADYCARDIA	Complete sinoatrial block in two patients with brad...
4	CORONARY DISEASE	Enhanced utilization of exogenous glucose improv...
5	CORONARY DISEASE	Myocardial amiodarone and desethylamiodarone c...
6	CORONARY DISEASE	Effects of benazepril and metoprolol OROS alone ...
7	HEART ANEURYSM	Atrial septal aneurysms in infants and children.
8	HEART ANEURYSM	Submitral left ventricular aneurysms. Correction by ...
9	MYOCARDIAL DISEASES	Altered norepinephrine turnover and metabolism i...
10	MYOCARDIAL DISEASES	Pathophysiology and pathogenesis of stunned my...

Figure 28 : The result after choosing specific attributes

Step 4 : Set Role

Then, I set the role for disease as label. Label is a special role. An Attribute with the id role acts as an identifier for the Examples. It should be unique for all Examples.

Input :

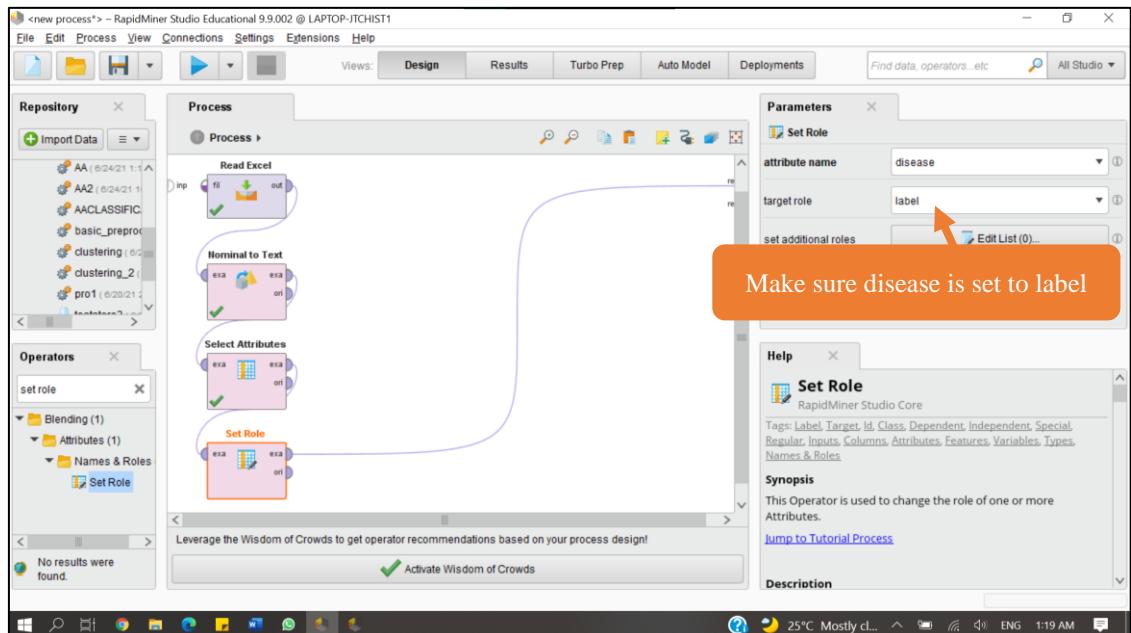


Figure 29 : Set the role label for Disease

Output :

Row No.	disease	ABSTRACT
1	BRADYCARDIA	Surgical treatment of pediatric cardiac ...
2	BRADYCARDIA	Comparative survival following perma...
3	BRADYCARDIA	Complete sinoatrial block in two patie...
4	CORONARY DISEASE	Enhanced utilization of exogenous glu...
5	CORONARY DISEASE	Myocardial amiodarone and desethyla...
6	CORONARY DISEASE	Effects of benazepril and metoprolol O...
7	HEART ANEURYSM	Atrial septal aneurysms in infants and ...
8	HEART ANEURYSM	Submitral left ventricular aneurysms. ...
9	MYOCARDIAL DISEASES	Altered norepinephrine turnover and ...
10	MYOCARDIAL DISEASES	Pathophysiology and pathogenesis of ...

Figure 30 : The disease after has been set role as label

Step 5 : Split Data

Continue, I split data into training and testing dataset by 0.8 (80%) and 0.2 (20%) respectively. Splitting data into training and testing sets is a significant piece of assessing data mining models. By utilizing comparable information for training and testing, we can limit the impacts of information errors and better comprehend the qualities of the model. [2] After the completion I keep the testing data into a file data named teststore1.

Input :

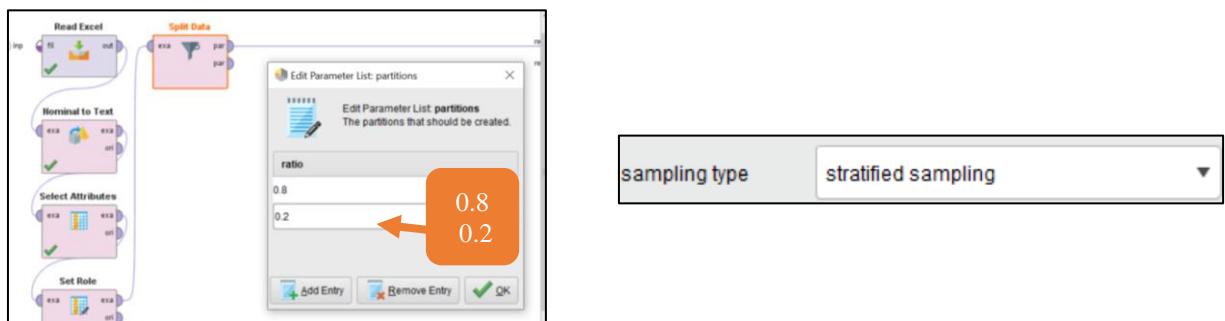


Figure 31 : Split Data into 0.8 and 0.2 and change the sampling type

Output :

Row No.	disease	ABSTRACT
1	BRADYCARDIA	Comparative survival following permanent ventricular and dual-cham...
2	BRADYCARDIA	Complete sinoatrial block in two patients with bradycardia-tachycardi...
3	CORONARY DISEASE	Enhanced utilization of exogenous glucose improves cardiac function...
4	CORONARY DISEASE	Effects of benazepril and metoprolol OROS alone and in combination ...
5	HEART ANEURYSM	Atrial septal aneurysms in infants and children.
6	HEART ANEURYSM	Submitral left ventricular aneurysms. Correction by a new transatrial a...
7	MYOCARDIAL DISEASES	Altered norepinephrine turnover and metabolism in diabetic cardiomy...
8	MYOCARDIAL DISEASES	Pathophysiology and pathogenesis of stunned myocardium. Depress...

Figure 32 : The training dataset (80%)

Row No.	disease	ABSTRACT
1	BRADYCARDIA	Surgical treatment of pediatric car...
2	CORONARY DISEASE	Myocardial amiodarone and deset...

Figure 33 : The testing dataset (20%)

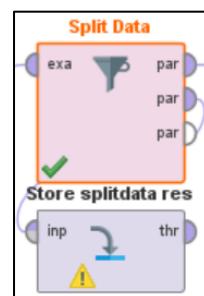


Figure 34 : Store the result into a data file

Step 6 : Preprocessing

Before starting any process, I should do data cleaning to my dataset. Therefore, I added Process Document from Data operator and do all preprocessing steps inside the operator.

Input :

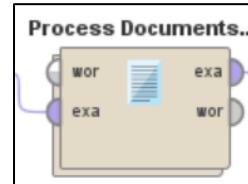


Figure 35 : Add Process Documents

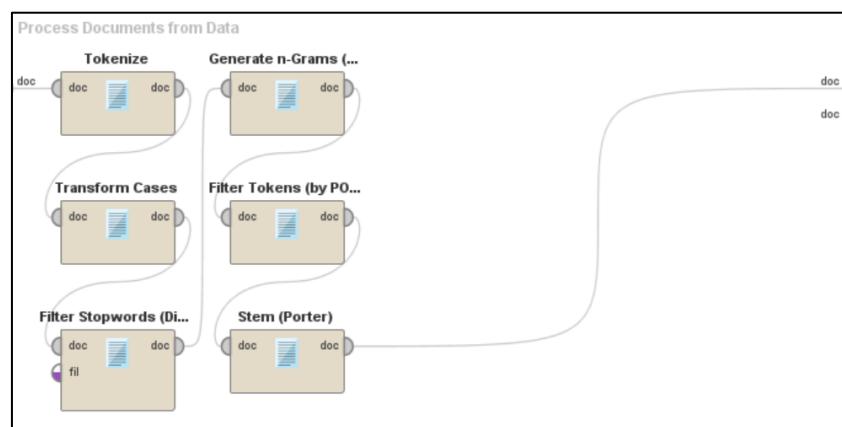


Figure 36 : Perform Preprocessing steps

Output :

Word	Total O...	Document Occurrences	BRADYCARDIA	CORONARY DISEASE	HEART ANEURYSM	MYOCARDIAL DISEASES
aneurysm	12	2	0	0	12	0
atrial	11	3	6	0	5	0
atrium	2	2	1	0	1	0
bradycar...	7	2	7	0	0	0
bradycar...	4	2	4	0	0	0
dysfunct	7	3	3	2	0	2
ischemia	2	2	0	1	0	1
markedli	2	2	0	1	0	1
maxim	6	2	0	3	0	3
sinoatri	3	2	3	0	0	0
sinoatria...	2	2	2	0	0	0
sinu	10	2	10	0	0	0
sinus_br...	3	2	3	0	0	0
tachycar...	5	2	5	0	0	0

Figure 37 : Data after going through preprocessing

Step 7 : Cross Validation

Next, I added Cross Validation operator. Cross-validation is fundamentally utilized in applied machine learning to assess the ability of a machine learning model on unseen data. That is, to utilize a restricted example to assess how the model is relied upon to act overall when used to make expectations on data not utilized during the preparation of the model. [\[3\]](#)

Input :

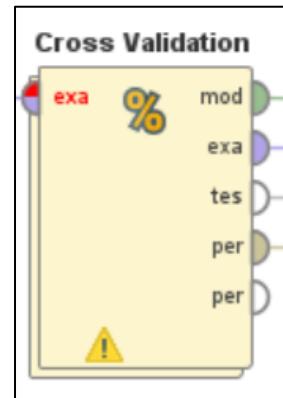


Figure 38 : Add Cross Validation operator

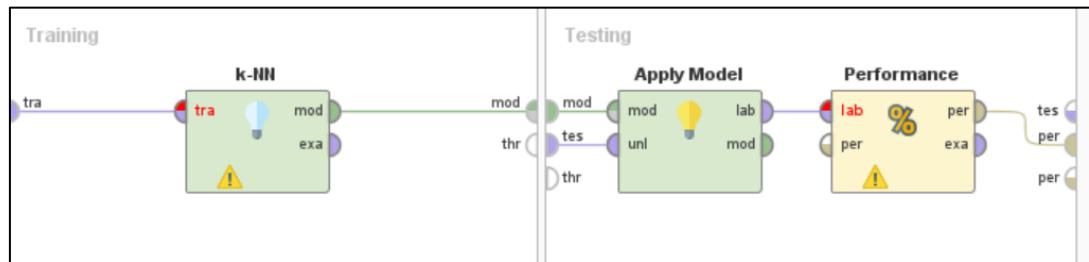


Figure 39 : Inside Cross Validation

Output :

accuracy: 25.00%					
	true BRADYCARDIA	true CORONARY D...	true HEART ANEU...	true MYOCARDIAL ...	class precision
pred. BRADYCARDIA	1	0	1	0	50.00%
pred. CORONARY D...	0	0	0	2	0.00%
pred. HEART ANEUR...	1	0	1	0	50.00%
pred. MYOCARDIAL ...	0	2	0	0	0.00%
class recall	50.00%	0.00%	50.00%	0.00%	

Figure 40 : The accuracy

PerformanceVector

```
PerformanceVector:  
accuracy: 0.00%  
ConfusionMatrix:  
True: BRADYCARDIA      CORONARY DISEASE      HEART ANEURYSM  MYOCARDIAL DISEASES  
BRADYCARDIA : 0          0          2          0  
CORONARY DISEASE : 0          0          0          2  
HEART ANEURYSM : 2          1          0          0  
MYOCARDIAL DISEASES: 0          1          0          0  
kappa: -0.333  
ConfusionMatrix:  
True: BRADYCARDIA      CORONARY DISEASE      HEART ANEURYSM  MYOCARDIAL DISEASES  
BRADYCARDIA : 0          0          2          0  
CORONARY DISEASE : 0          0          0          2  
HEART ANEURYSM : 2          1          0          0  
MYOCARDIAL DISEASES: 0          1          0          0
```

Figure 41 : Performance Vector

Testing

Step 1 : Get the data and test

To start the testing, I fetched my data and testing dataset from the file that I have stored before during the process Training.

Input :

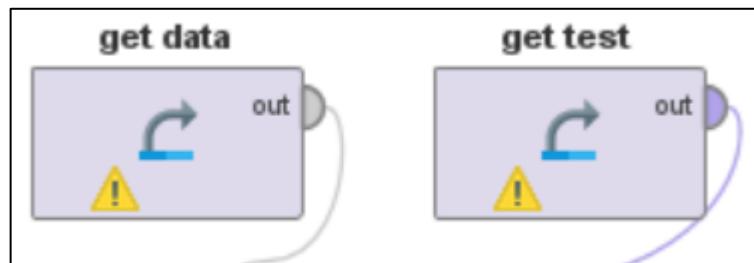


Figure 42 : Get Data and Test

Output :

Row No.	disease	ABSTRACT
1	BRADYCARD...	Surgical treat...
2	CORONARY ...	Myocardial a...

Figure 43 : Result for get Test

Word	Attribut...	Total O...	Docum...	BRADY...	CORON...	HEART ...	MYOCA...
aneurysm	aneurysm	12	2	0	0	12	0
atrial	atrial	11	3	6	0	5	0
atrium	atrium	2	2	1	0	1	0
bradycardia	bradycar...	7	2	7	0	0	0
bradycardia_tachycardia	bradycar...	4	2	4	0	0	0
dysfunct	dysfunct	7	3	3	2	0	2
ischemia	ischemia	2	2	0	1	0	1
markedli	markedli	2	2	0	1	0	1
maxim	maxim	6	2	0	3	0	3
sinoatri	sinoatri	3	2	3	0	0	0
sinoatrial Bradycardia	sinoatria...	2	2	2	0	0	0

Figure 44 : Result for get Data

Step 2 : Preprocess

To double the secure, I preprocessed both data again and the prune method is percentual.

Input :

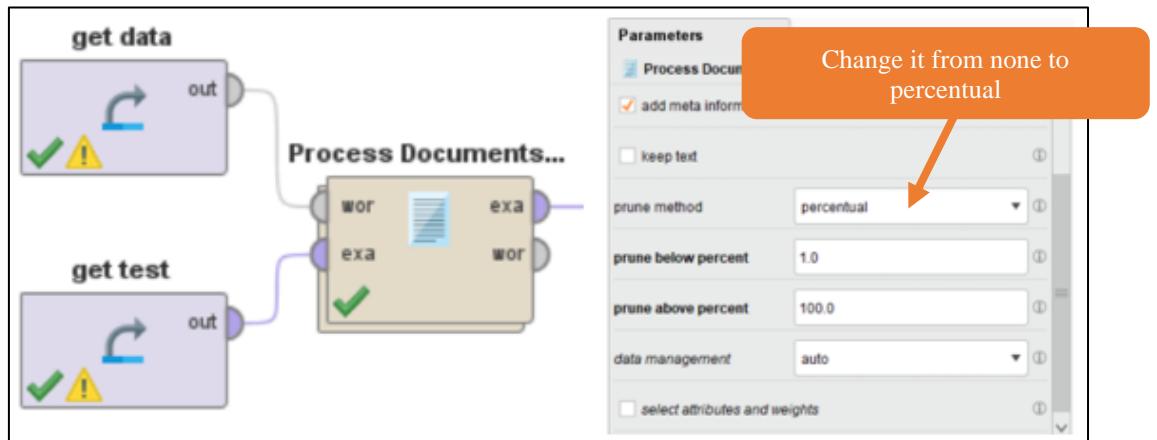


Figure 45 : Add Process Document

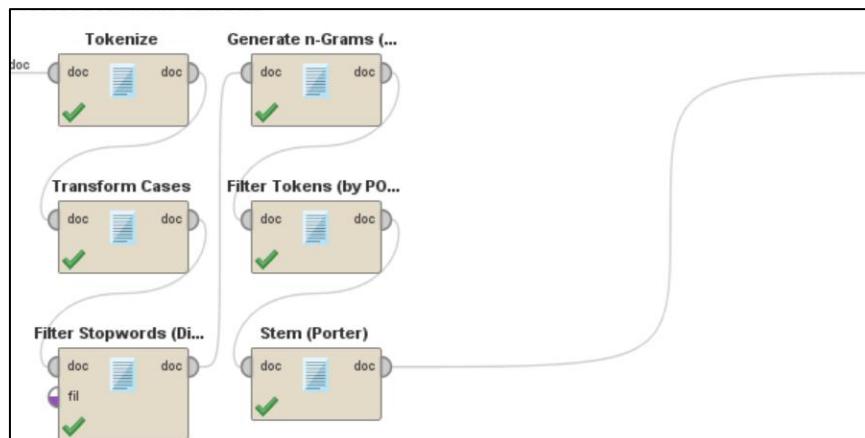


Figure 46 : Inside of the process document

Output :

Row No.	disease	aneurysm	atrial	atrium	bradycardia	bradycardia...	dysfunct	ischemia	marke
1	BRADYCARD...	0	0	0	0.707	0	0	0	0
2	CORONARY ...	0	0	0	0	0	0	0	0

Figure 47 : The result after going through preprocess

Step 3 : Set Role

Next, I set role for disease as the label. This step is important. Setting an attribute to label is a very important role. An Attribute with the id role goes about as an identifier for the Examples. It should be unique for all Examples.

Input :

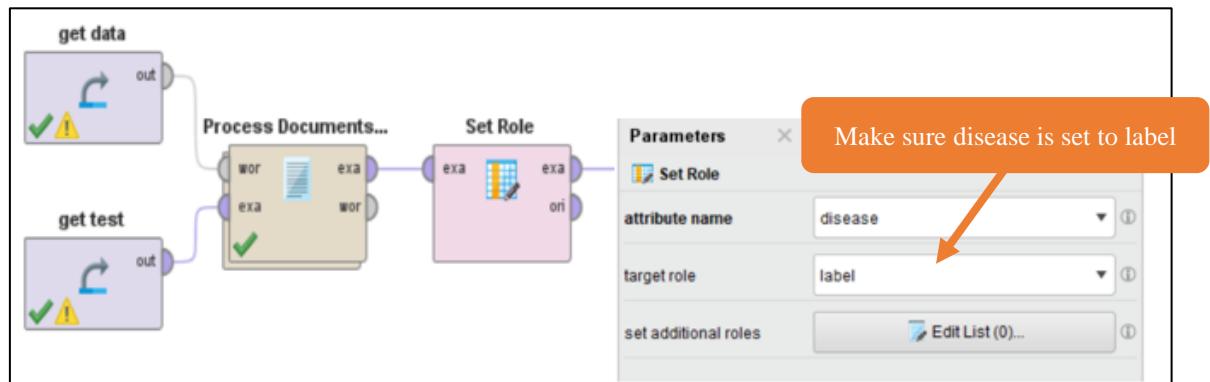


Figure 48 : Set Role for attribute disease

Output :

Row No.	disease	aneurysm	atrial	atrium	bradycardia	bradycardia...	dysfunct	ischemia	marke
1	BRADYCARD...	0	0	0	0.707	0	0	0	0
2	CORONARY ...	0	0	0	0	0	0	0	0

Figure 49 : The result after set role

Step 4 : Apply Model

Lastly, I will apply the model. I added the Apply Model operator. As I add the operator, it will ask for the model. Therefore, I imported the model that has been generated during the Training process that I kept in a file by using the Retrieve operator.

Input :

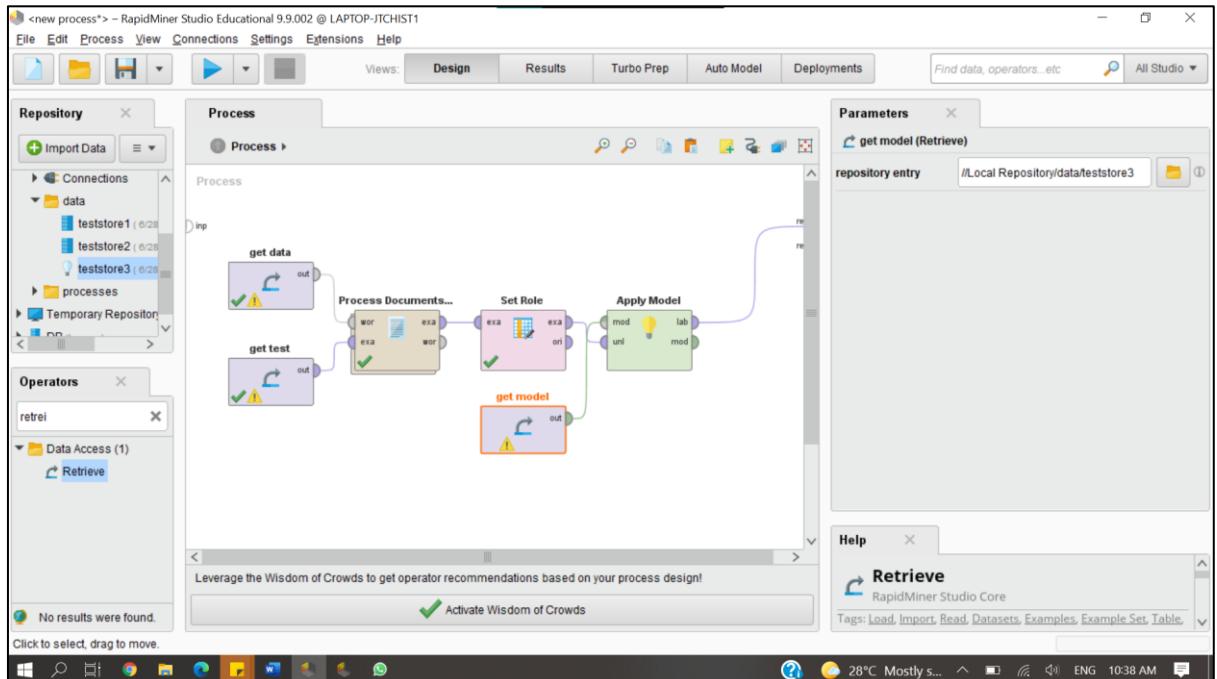


Figure 50 : Add Apply Model operator and get Model operator

Output :

Row No.	disease	prediction(disease)	confidence(...)	confidence(...)	confidence(...)	confidence(...)	aneurysm	atria
1	BRADYCARDIA	BRADYCARDIA	0.704	0.296	0	0	0	0
2	CORONARY DISEASE	HEART ANEURYSM	0.354	0	0.646	0	0	0

Figure 51 : The final result of the classification

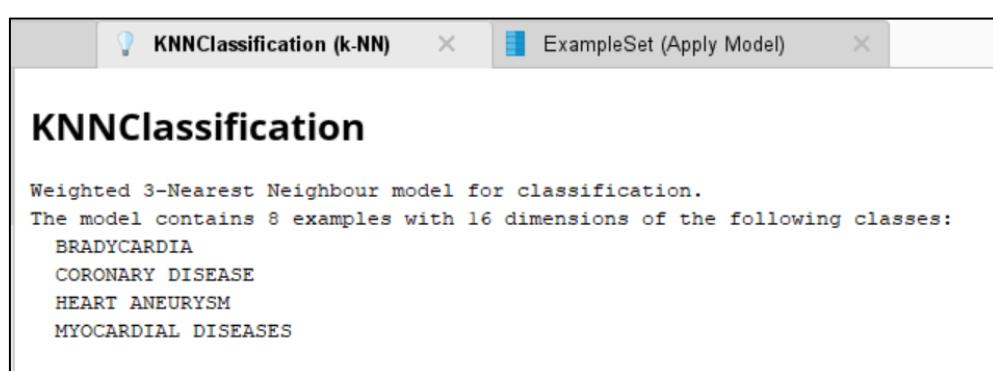


Figure 52 : KNNClassification

c) Performance Measures

Row No.	disease	prediction(disease)	confidence(...)	confidence(...)	confidence(...)	confidence(...)	aneurysm	atria
1	BRADYCARDIA	BRADYCARDIA	0.704	0.296	0	0	0	0
2	CORONARY DISEASE	HEART ANEURYSM	0.354	0	0.646	0	0	0

Figure 53 : The result for Testing dataset using KNN algorithm

accuracy: 25.00%						
	true BRADYCARDIA	true CORONARY D...	true HEART ANEU...	true MYOCARDIAL ...	class precision	
pred. BRADYCARDIA	1	0	1	0	50.00%	
pred. CORONARY ...	0	0	0	2	0.00%	
pred. HEART ANE...	1	0	1	0	50.00%	
pred. MYOCARDIA...	0	2	0	0	0.00%	
class recall	50.00%	0.00%	50.00%	0.00%		

Figure 54 : The result for Training dataset using KNN algorithm

Based on figure 54, the total item in the table could total up to 8, which is equal to the training dataset. It has been shown that the accuracy of the training dataset is 25%. To understand the training result better, we should look at BRADYCARDIA. It predicted BRADYCARDIA to be true is only 1 while the another one it predicted it to be HEART ANEURYSM. This could cause the precision to be 50% while recall is also 50%. Even though the accuracy is low, we can't say that the whole classification process using KNN is totally wrong. The accuracy is actually depends on number of data used, the less data been used will cause the result to be a little inaccurate and insufficient.

1.2.2 Unsupervised Learning Algorithm

Unsupervised learning is likewise an exceptionally normal kind of machine learning. It contrasts from regulated learning in that the data that has no label (unlabeled). One unsupervised learning algorithm that I can apply for given appendix 2 is Clustering. There are many algorithms that falls under the unsupervised learning algorithm such as clustering, association and dimensionality reduction. Clustering is gathering a set of items in such a way that objects in a same cluster are more comparable than to those objects having a place with different cluster. While, association rules are tied in with discovering relationship among things inside huge business data sets. Clustering algorithms are for the most part utilized when we need to make the clusters dependent on the characteristic of the data focuses. For both algorithms, the target variable is not available as the data that is going to use is the unlabeled.

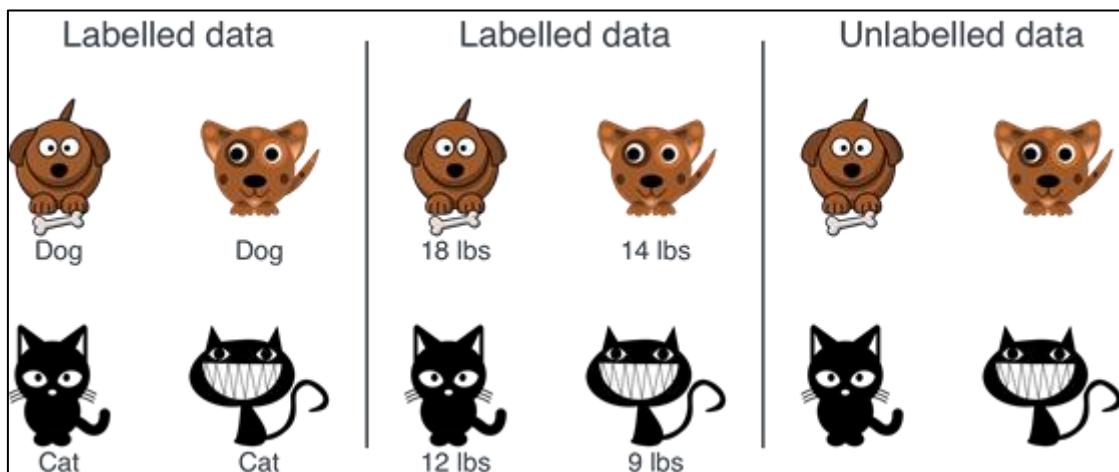


Figure 55: Visualization of data [4]

e)

Step 1 : Read Excel

The very first step is to read the dataset. For this question, I needed to refer appendix 2 and my dataset is dataset 29. Therefore, I changed the format from .docx to .xlsx so that the tool can read it easily by using the ‘Read Excel’ operator.

Input :

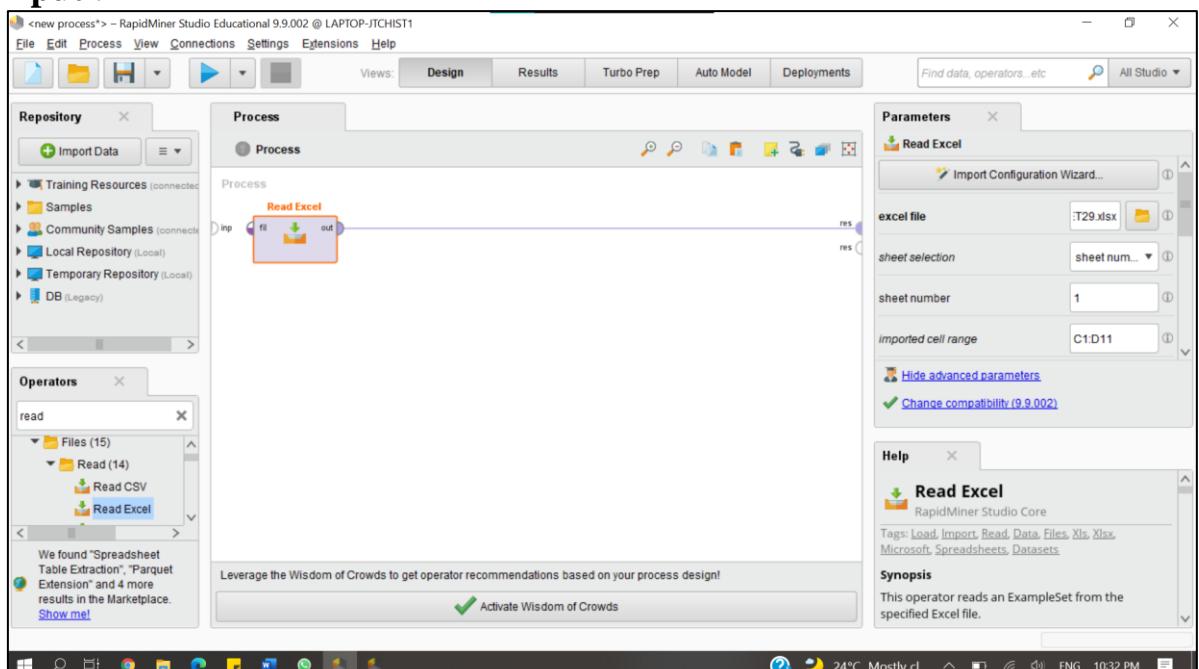


Figure 56 : Read excel operator

Output :

Row No.	disease	ABSTRACT
1	BRADYCARDIA	Surgical treatment of pediatric cardiac arrhythmia.
2	BRADYCARDIA	Comparative survival following permanent ventricular and dual-chamber p...
3	BRADYCARDIA	Complete sinoatrial block in two patients with bradycardia-tachycardia syn...
4	CORONARY DISEASE	Enhanced utilization of exogenous glucose improves cardiac function in hy...
5	CORONARY DISEASE	Myocardial amiodarone and desethylamiodarone concentrations in patient...
6	CORONARY DISEASE	Effects of benazepril and metoprolol OROS alone and in combination on ...
7	HEART ANEURYSM	Atrial septal aneurysms in infants and children.
8	HEART ANEURYSM	Submitral left ventricular aneurysms. Correction by a new transatrial appro...
9	MYOCARDIAL DISEASES	Altered norepinephrine turnover and metabolism in diabetic cardiomyopat...
10	MYOCARDIAL DISEASES	Pathophysiology and pathogenesis of stunned myocardium. Depressed C...

Figure 57 : The data that has been read by the tool

Step 2 : Nominal to Text

Next, I added the Nominal to Text operator. The Nominal to Text operator converts all nominal attributes to string attributes.

Input :

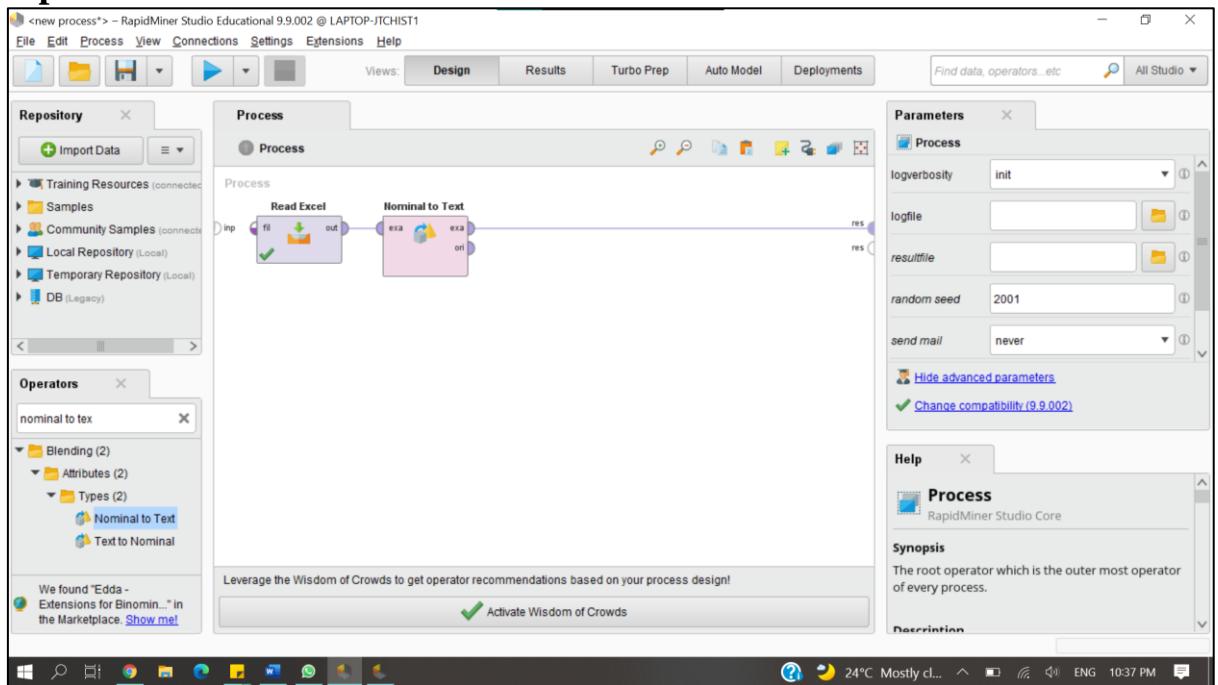


Figure 58 : Nominal to Text operator

Output :

Row No.	disease	ABSTRACT
1	BRADYCARDIA	Surgical treatment of pediatric cardiac arrhythmia.
2	BRADYCARDIA	Comparative survival following permanent ventricular and d...
3	BRADYCARDIA	Complete sinoatrial block in two patients with bradycardia-t...
4	CORONARY DISEASE	Enhanced utilization of exogenous glucose improves cardi...
5	CORONARY DISEASE	Myocardial amiodarone and desethylamiodarone concentr...
6	CORONARY DISEASE	Effects of benazepril and metoprolol OROS alone and in co...
7	HEART ANEURYSM	Atrial septal aneurysms in infants and children.
8	HEART ANEURYSM	Submitral left ventricular aneurysms. Correction by a new tr...
9	MYOCARDIAL DISEASES	Altered norepinephrine turnover and metabolism in diabeti...
10	MYOCARDIAL DISEASES	Pathophysiology and pathogenesis of stunned myocardiu...

Figure 59 : The data has been changed from nominal to text

Step 3 : Select attribute

In this step, I needed to select the needed attribute only. Therefore I chose ABSTRACT as I am about to process the long text data.

Input :

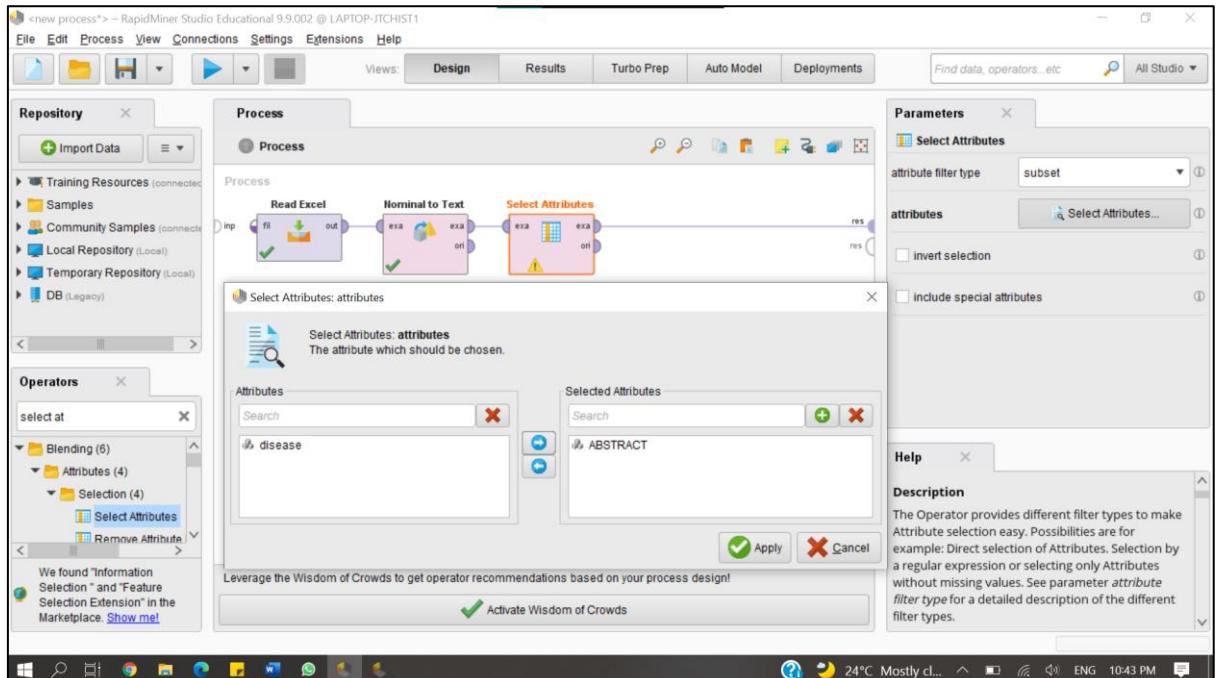


Figure 60 : Choosing the Abstract as attribute

Output :

Row No.	ABSTRACT
1	Surgical treatment of pediatric cardiac arrhythmia.
2	Comparative survival following permanent ventricular an...
3	Complete sinoatrial block in two patients with bradycardi...
4	Enhanced utilization of exogenous glucose improves car...
5	Myocardial amiodarone and desethylamiodarone conce...
6	Effects of benazepril and metoprolol OROS alone and in ...
7	Atrial septal aneurysms in infants and children.
8	Submitral left ventricular aneurysms. Correction by a ne...
9	Altered norepinephrine turnover and metabolism in diab...
10	Pathophysiology and pathogenesis of stunned myocard...

Figure 61 : The latest data after choosing attribute abstract

Step 4 : Preprocessing

To do preprocessing, I needed to add the Process Documents from Data operator first. And then proceed the basic preprocessing in the Process Documents. Almost all process, preprocessing is the most basic and needed to be done first before we get deeper into other processes.

Input :

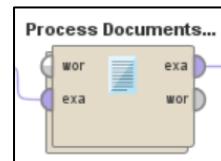


Figure 62 : Add Process Documents operator

Figure 63 : All preprocessing basic step

Output :

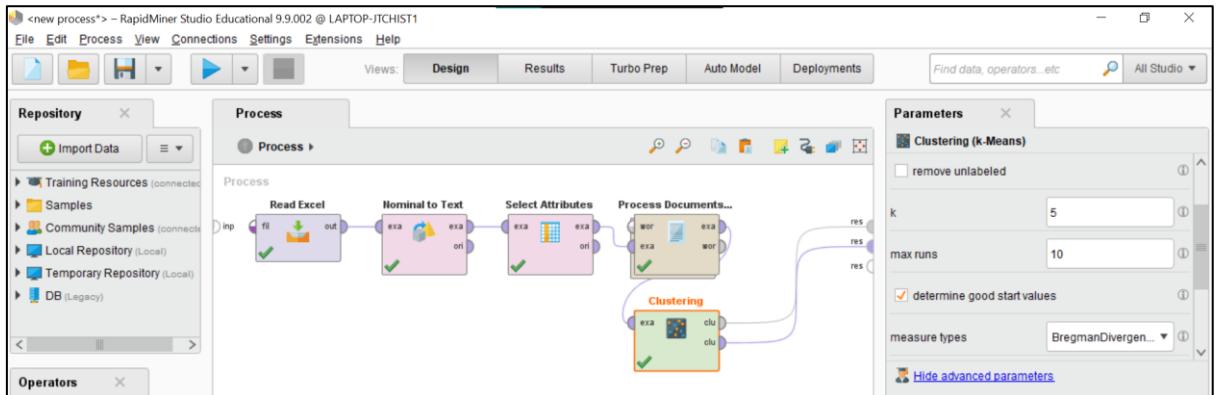
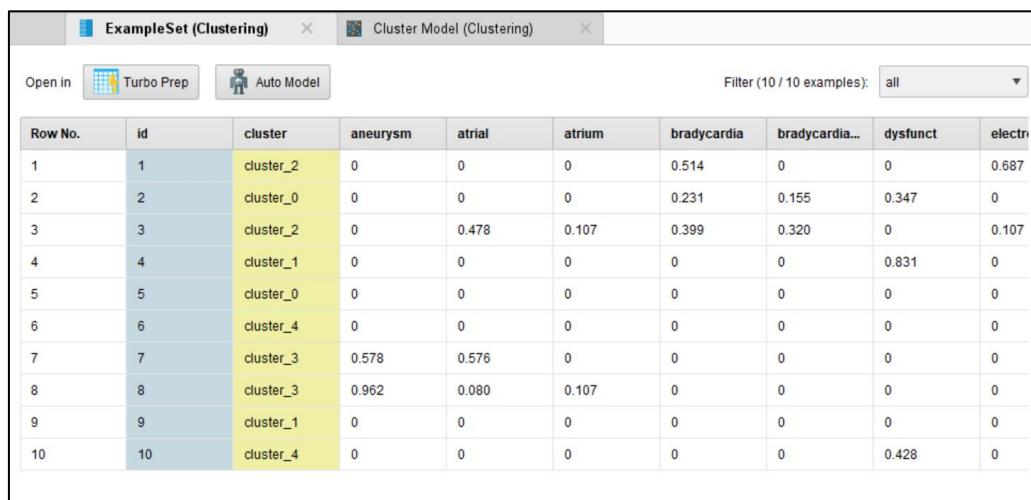
```
*Untitled - Notepad
File Edit Format View Help
atrial
bradycardia
dysfunct
tachycardia
ventricular
aneurysm
atrium
bradycardia_tachycardia
electrophysiolog
ischemia
markedli
maxim
septal
sinoatri
sinoatrial Bradycardia
sinu
sinus Bradycardia|
```

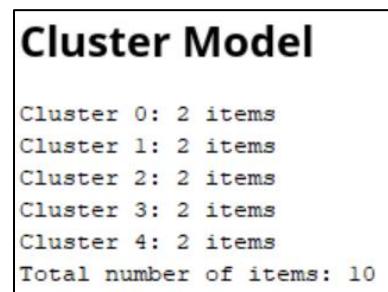
Figure 64 : The list of word generated after going through the preprocessing

Step 5 : K Means

To apply the clustering, I added the K-Means Clustering operator. This Operator performs clustering utilizing the k-means algorithm. Clustering assembles examples which are almost likely the same with one another.

Input :


Figure 65 : Add the K-Means operator

Output :

Row No.	id	cluster	aneurysm	atrial	atrium	bradycardia	bradycardia...	dysfunt	electr
1	1	cluster_2	0	0	0	0.514	0	0	0.687
2	2	cluster_0	0	0	0	0.231	0.155	0.347	0
3	3	cluster_2	0	0.478	0.107	0.399	0.320	0	0.107
4	4	cluster_1	0	0	0	0	0	0.831	0
5	5	cluster_0	0	0	0	0	0	0	0
6	6	cluster_4	0	0	0	0	0	0	0
7	7	cluster_3	0.578	0.576	0	0	0	0	0
8	8	cluster_3	0.962	0.080	0.107	0	0	0	0
9	9	cluster_1	0	0	0	0	0	0	0
10	10	cluster_4	0	0	0	0	0	0.428	0

Figure 66 : Example Set

Cluster Model

Cluster 0: 2 items
Cluster 1: 2 items
Cluster 2: 2 items
Cluster 3: 2 items
Cluster 4: 2 items
Total number of items: 10

Figure 67 : Cluster Model

Step 6 : Cluster Model Visualizer

To visualize and understand the cluster model better, I added Cluster Model Visualizer. There will be no parameter needed.

Input :

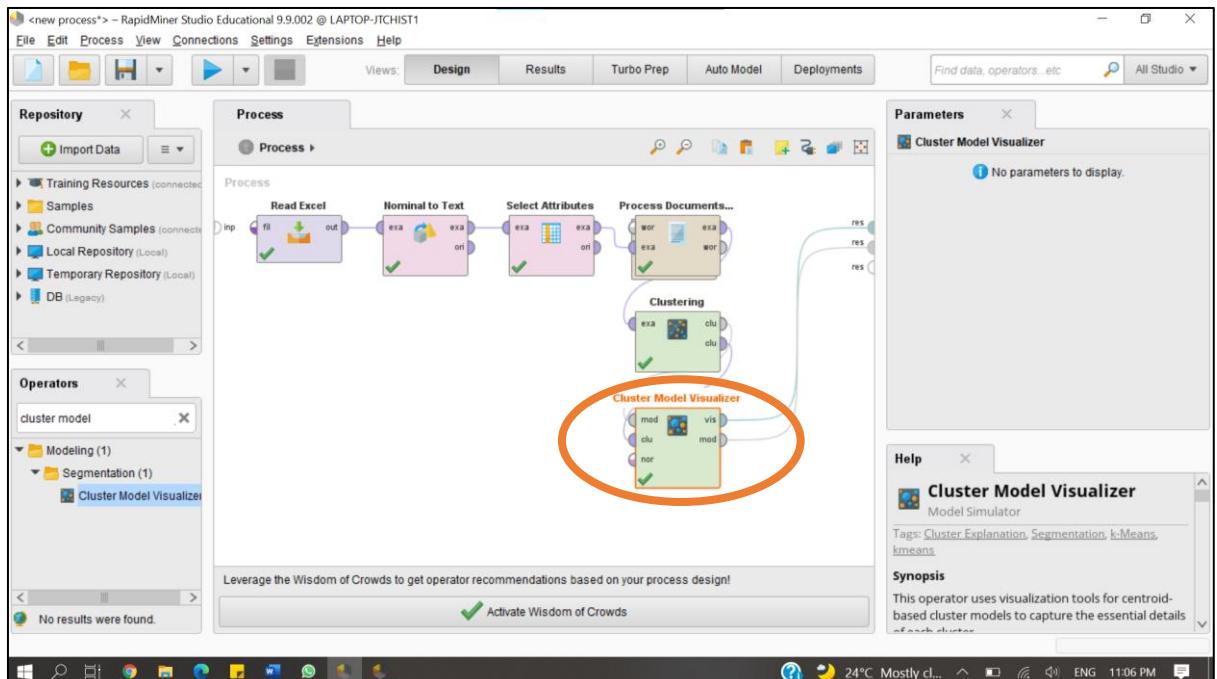


Figure 68 : Add Cluster Model Visualizer

Output :

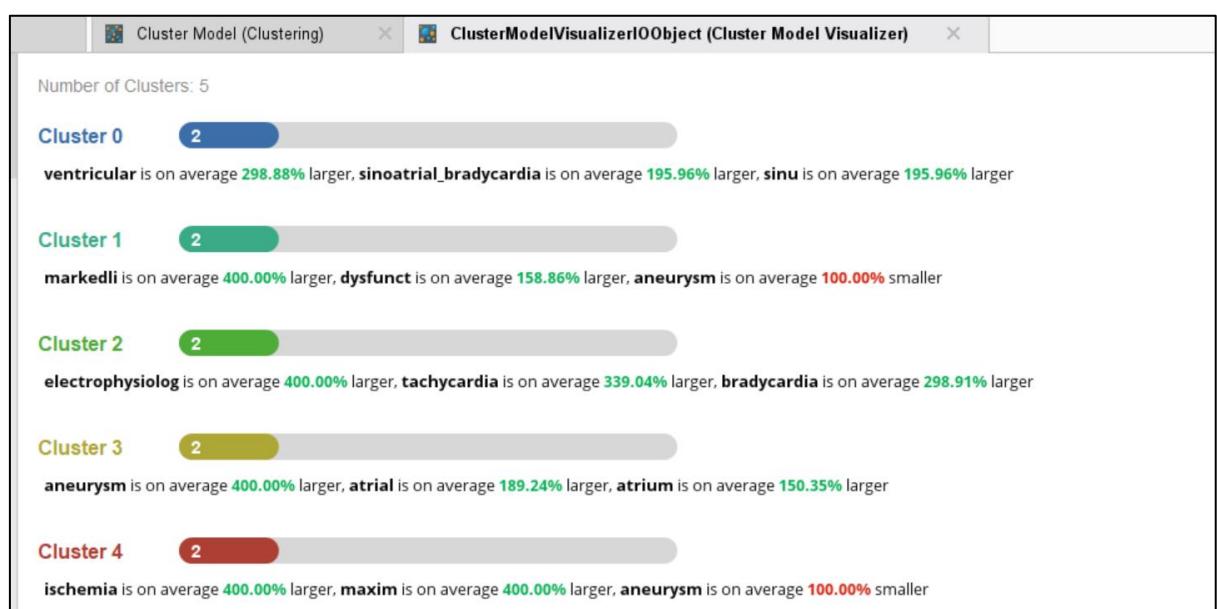


Figure 69 : Output Cluster Model Visualizer

f) Performance Measures

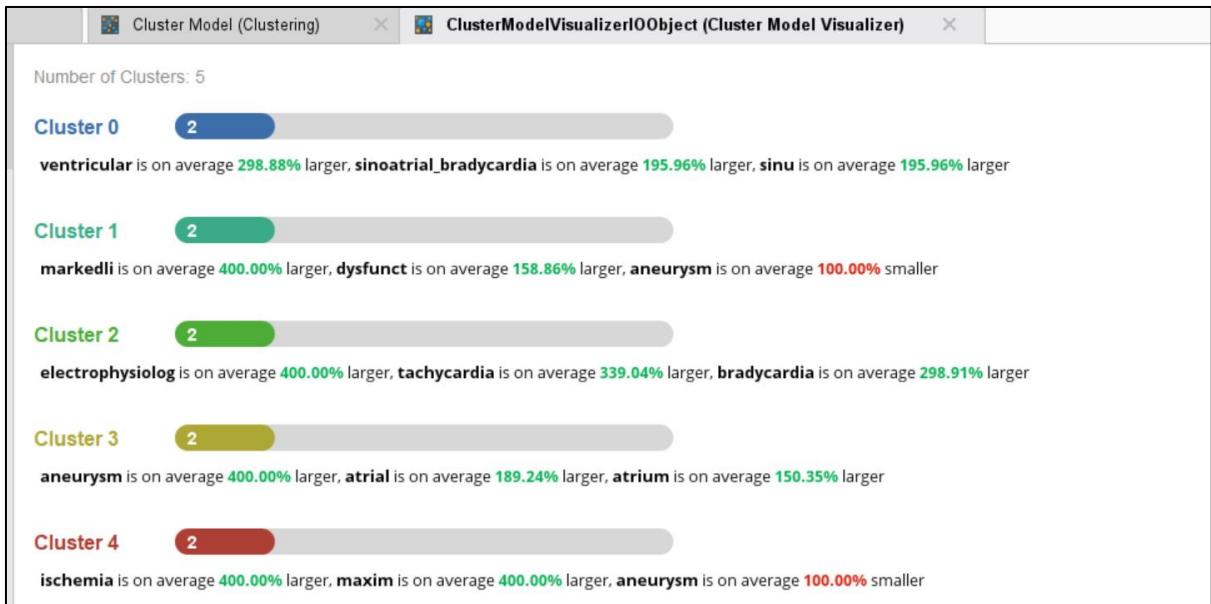


Figure 70 : Output Cluster Model Visualizer

Based on the figure above, it shows the final result for the Clustering process and it is visualized using the Cluster Model Operator. The total number of clusters is 5 (cluster 0 – cluster 4) since I set the value of $K = 5$ during the process of K-Means. To understand this better, from the figure, in cluster 3, aneurysm, atrial and atrium are been clustered together since they own almost the same characteristic. But we can see that the word aneurysm is 400% larger than atrial (189.24%) and atrium (150.35%). This simply means that aneurysm is the most popular word in the cluster 3.

2.0 PART 2

(a) Throughout completing this alternative assessment, I found that I learnt a lot of new things specifically in Data Mining. Before doing this alternative assessment, I thought it's very hard for me to understand any topic in this course. Since this alternative assessment is important as part of the courses, therefore I knew I will need to do some research any information regarding this project. Luckily, before starting the alternative assessment, me and my group members for project has started doing some project works especially in the text preprocessing step. Therefore, it wasn't awkward for me to start doing this alternative assessment by myself. I could say that I really enjoyed the experience of doing data mining task. I enjoyed doing the research on how to do data mining. The thing that I found frustrating about is that every knowledge that I applied during completing the alternative assessment, I could say that almost everything is wrong and misleading. That's when I realized that my efforts were kind of been wasted just like that. But nevertheless, it brings me to a new experience whereby I learnt from my mistakes.

(b) For me, the most difficult part in this alternative assessment is the part 1 question 2 where we needed to do data mining task. I found it's hard because I may can do the data mining task, but I don't really understand the result of it. That's when I knew I needed to do a lot more research than before. I gathered a lot more information about each supervised and unsupervised learning algorithm. The thing that I remembered to be effective is I started this alternative assessment earlier. As soon as Dr. Rozilawati gave it to us, I opened it and read everything through so that I could measure my strength of knowledge based on the difficulty of the questions. By the time I received this alternative assessment also, I knew that I could easily done the part 1 question 1. But the question 2, I seemed a bit taken aback since by that time my knowledge about doing data mining task is a bit low. The most ineffective I ever did during the completion of the alternative assessment is I didn't allocate the time wisely to complete the alternative assessment. After done with question 1 for part 1, I left the question 2 unanswered for a while because I thought that I needed to do more research about it. So, I did other courses' assignments first. Few days later, then I just realized that I haven't start anything for question 2, so I was panic and tried to do everything and completed the question 2, two days before the submission.

(c) There are few things that I think I needed to improve in this course. Firstly, in order for me to improve myself in this course, I should explore more other data mining tools. In the short time given, I chose RapidMiner for my tool for this alternative assessment because it has many resources for me to at least learn from. But I think after this I might want to explore tools such as Weka, Power BI etc. Secondly, I should expose myself with handling different type of dataset with a big amount of data. Since in the world, we have a lots of data type. Therefore, by having the experience to handle different types of data, it can enhance my knowledge about data mining, and I can also get the benefits from it. In my opinion, this Data Mining course can be applied in my future job. Since I'm major in Data Engineer, my scope of job definitely will be in this field too, which needed to handle big data. This course really helped to expose me to the real-world job especially in data.

(d) In a nutshell, in order for me to meet the learning needs, I should do a lot more findings about data mining task and engage myself handling big data more. To be success specifically in this course, I should try and error all data mining algorithm. Learn from mistakes and change to be better. Throughout this course, I found that I had developed new skills which are preprocess data from raw and process them through data mining task. Before entering this course, I don't even know how to clean data and I thought that I can't do it. After finishing this course, I realized that cleaning data wasn't really that hard if I practiced a lot. After all the practice and learning from our lecturer, Dr. Rozilawati, my skills increased

Reference

1. (2) *What is the difference between clustering and association rule mining?* - Quora. (2018). Quora.com. <https://www.quora.com/What-is-the-difference-between-clustering-and-association-rule-mining>
2. Minewiskan. (2018, May 8). *Training and Testing Data Sets*. Microsoft.com. <https://docs.microsoft.com/en-us/analysis-services/data-mining/training-and-testing-data-sets?view=asallproducts-allversions>
3. <https://www.facebook.com/MachineLearningMastery>. (2018, May 22). *A Gentle Introduction to k-fold Cross-Validation*. Machine Learning Mastery. <https://machinelearningmastery.com/k-fold-cross-validation/>
4. 2.1 *What is the difference between labelled and unlabelled data?* · *Grokking Machine Learning MEAP V14*. (2021). Manning.com. <https://livebook.manning.com/book/grokking-machine-learning/2-1-what-is-the-difference-between-labelled-and-unlabelled-data-/v-4/40>

APPENDIX

feedback studio NUR ALEEYA SYAKILA BINTI MUHAMAD SUBIAN Data Mining Alternative Ass... [?](#)

UNIVERSITI TEKNOLOGI MALAYSIA
SEMIESTER II - 2020 / 2021
ALTERNATIVE ASSESSMENT (INDIVIDUAL)

SUBJECT CODE : SCSP2753
SUBJECT NAME : DATA MINING
DATE : 23 JUNE – 1 JULY 2021
DURATION : 7 DAYS
SUBMISSION DATE : 1 JULY 2021

INSTRUCTIONS:
This alternative assessment is assessed individually.
This alternative assessment consists of **TWO** parts.
Read all questions carefully and please answer **ALL** questions.
Submit your answer (report) via e-learning and submission later than the due date is not accepted.
Any form of plagiarism is not allowed.

Name	NUR ALEEYA SYAKILA BINTI MUHAMAD SUBIAN
UIN No.	000726100810
Year / Course	2 SECP
Section	01
Lecturer Name	DR ROZILAWATI BINTI DOLLAH

Match Overview 10% [X](#)

1 docs.rapidminer.com 3% [>](#)
Internet Source

2 Submitted to SASTRA ... 1% [>](#)
Student Paper

3 www.sketchengine.eu 1% [>](#)
Internet Source

4 Submitted to Harrisbur... 1% [>](#)
Student Paper

5 Submitted to The Unive... 1% [>](#)
Student Paper

Page: 1 of 39 Word Count: 3570 Text-Only Report | High Resolution [On](#) [X](#) [Q](#) [S](#) [R](#) [D](#)

NUR ALEEYA SYAKILA BINTI MUHAMAD SUBIAN User Info Messages Student English Help Logout

turnitin

Class Portfolio My Grades Discussion Calendar

NOW VIEWING: HOME > DATA MINING PROJECT

Welcome to your new class homepage! From the class homepage you can see all your assignments for your class, view additional assignment information, submit your work, and access feedback for your papers. Hover on any item in the class homepage for more information. [X](#)

Class Homepage

This is your class homepage. To submit to an assignment click on the "Submit" button to the right of the assignment name. If the Submit button is grayed out, no submissions can be made to the assignment. If resubmissions are allowed the submit button will read "Resubmit" after you make your first submission to the assignment. To view the paper you have submitted, click the "View" button. Once the assignment's post date has passed, you will also be able to view the feedback left on your paper by clicking the "View" button.

Assignment Inbox: Data Mining Project

Assignment Title	Info	Dates	Similarity	Actions
Alternative Assessment	ⓘ	Start 28-Jun-2021 5:13PM Due 15-Jul-2021 11:59PM Post 06-Jul-2021 12:00AM	10%	Resubmit View Download