

#### DEPARTMENT OF APPLIED COMPUTING

**SUBJECT: PROBABILITY & STATISTICAL DATA ANALYSIS** 

ASSESSMENT: EXERCISE 1 CODE: SECI 2143 WEEK: 2

Name SOH ZEN REN

: WONG HUI SHI

TEOH WEI JIAN

Matric ID / IC No A20EC0152

: A20EC0169

A20EC0229

| Question 1,2,3,4 | Wong Hui Shi  |  |
|------------------|---------------|--|
| Question 5,6,7   | Soh Zen Ren   |  |
| Question 8,9,10  | Teoh Wei Jian |  |

# ASSIGNMENT 3: Hypothesis 1 sample, 2 sample, Chi-Square test, Correlation, Regression, Anova ANSWERS SHEET

Group 12

Question 1

Given

$$\alpha/2 = 0.05$$

Therefore :

$$\begin{array}{rcl}
\bar{x} \pm Z_{\alpha/2} \frac{O}{Jn} &= 19.5 \pm Z_{0.1/2} \frac{(9.88)}{J25} \\
&= 19.5 \pm Z_{0.05} \frac{9.88}{J25} \\
&= 19.5 \pm (1.645) \left(\frac{9.88}{J25}\right)
\end{array}$$

The lower and upper confidence lmits are 16.25 and 22.75. confidence interval = (16.25, 22-75)

. We are 90% confident that the mean time of 100-meter performance for the university students is between 16.25 and 22.75.

#### Question 1

(b) Given

total food stores = 360

food stores offers special promotion = 160

point estimate :  $\beta = \frac{\text{food stores offer special promotion}}{\text{total food stores}}$ 

= 160 360

= 0.44

for  $\alpha = 0.01$ , 20.01 = 258 (99% confidence interval)

99%.CI =  $\hat{p} \pm Z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.44 \pm 2.58 \left(\sqrt{\frac{(0.44)(1-0.44)}{360}}\right)$ 

= 0.44 ± 0.0675

= (0.3725, 0.5075)

:. We are 99% confident that the population of food stores that effers promotion is between 0.3725 and 0.5075.

A CONTRACT OF STREET OF STREET

海大学·阿尔·加州中国中国 在 1000年110日 高中的

(a) Given

total tested : 350

morreet = 33

statement of Hypothesis:

H.= M = 0.1

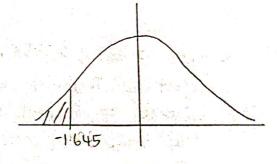
H1: M < 0.1

For a = 0.05 , Z 0.05 =-1.645

point estimate =  $\hat{p} = \frac{\text{incorrect}}{\text{total tested}} = \frac{33}{350} = 0.094$ 

$$2 = \frac{\hat{P} - P}{\sqrt{\frac{19}{h}}} = \frac{0.094 - 0.1}{\sqrt{\frac{(0.1)(0.9)}{350}}} = -0.3742$$

- since -0-3742>-1645, fail to reject Ho, there are insufficient evidence to support that the morrect test result will be less -1645. Than 10%



$$n=16$$
  $\bar{\chi} = 58400$   $0 = 652$   $0 = 100\% - 99\%$ 

$$= 1\%$$

$$= 0.0\%$$

For two tail,  $\alpha/2 = 0.01/2$ = 0.005

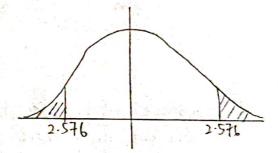
H1: M + 58000

For d = 0.005 , Zo.005 = ±2.5758

$$Z = \frac{\overline{X} - M}{D / \sqrt{JN}} = \frac{58400 - 58000}{652 / \sqrt{J6}} = 2.454$$

P-value = P(z=2.454) = 0.00734

since 2.454 \( 2.5758\), fail to reject Ho. There is manificient evidence to support that the true value compressive strength of steel is 58000 psi.



$$\overline{x} = \frac{10.3 + 9.9 + 10.2 + 10.1 + 9.7 + 9.9 + 9.8 + 10.3 + 10.0 + 10.4}{10}$$

por this data given:

The standard deviation is S = 0.2366

Statement of Hypothesis:

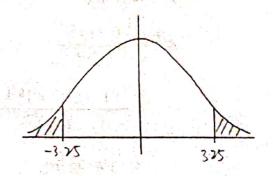
H. = M = 10

H. = M = 10

Test statistic:  

$$t = \frac{\overline{X} - M}{815\overline{n}} = \frac{10.06 - 10}{0.2366150} = 0.8019$$

2 Since 0.8019 < 3.25, fail to reject Ho. There are sufficient evidence to support the average content volume of the Brand X car lubricant is 10 litres.



#### Question 3

## (b) Given

For the data given:

The standard deviation B S = 0.6907

statement of hypothesis =

"THE STATE OF THE SECTOR

WHITE STREET &

$$\propto /2 = 1-0.95/2$$

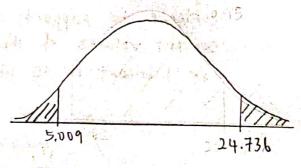
For 
$$\chi^2_{0.025}$$
, 13 = 24.736 (right tail) = 0.05/2  
= 5.009 (left tail) = 0.025

STATE OF STATE OF SURLE

Test statistic:

$$X^2 = \frac{(n-1)S^2}{\sqrt{n^2}}$$

= 32.0344



- Since 32-0344 > 24-736 , reject Ho. There are insufficient evidence to prove that standard deviation of weight of baby is equal to 0.44 kg.

## Buestin 4

Given

Statement of hypothesi3 =

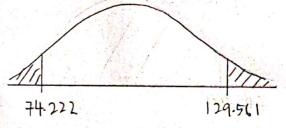
Test statistics =

$$x^{2} = \frac{(n-1) s^{2}}{0.165}$$

$$= \frac{(101-1) (0.18)}{0.165}$$

For x<sub>0.025</sub>, 100 = 129.561 (right) = 74.222 (left tail)

: since 109.091 < 124.342, fail to reject Ho. There are suffrient entainil to conclude that the new joint is making satisfactory measurements.

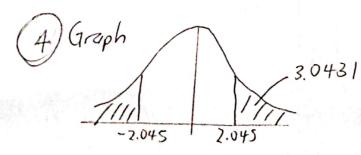


$$n_1 = 15$$
,  $\overline{X}_1 = 76.4$ ,  $S_1^2 = 25.3$   
 $n_2 = 18$ ,  $\overline{X}_2 = 71.2$ ,  $S_2^2 = 22.2$ 

() Hypothesis

$$H_0: \mathcal{U}_1 = \mathcal{U}_2$$
  
 $H_1: \mathcal{U}_1 \neq \mathcal{U}_2$ 

$$t_0 = \frac{\overline{X_1} - \overline{X_2} - 0}{\int \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = \frac{\frac{3}{2}6.4 - \frac{7}{1.2}}{\int \frac{25.3}{15} + \frac{22.2}{18}}$$



(5) Conclusion:

Since test statistic value is greater than critical value which is 3.041 > 2.045, we reject the null hypothesis. There is sufficient evidence to conclude that there is difference in the mean spending between 2 populations in 95% significance level.

$$n_1 = 16$$
 &  $n_2 = 21$   
 $S_1 = 3.6$  &  $S_2 = 2.5$ 

1 Hypothesis

$$H_0: \sigma_1 = \sigma_2$$
  
 $H_1: \sigma_1 > \sigma_2$ 

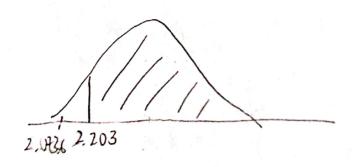
Q(i) Test statistic

$$F = \frac{S_1^2}{S_2^2} = \frac{(3.6)^2}{(2.5)^2} = 2.0736$$

(ii) Degree of freedom

Numerator, n, -1 = 16-1 = 15Denominator,  $n_2-1 = 21-1 = 20$ 

$$3$$
  $\chi = 0.95$   
 $f_{0.95,15,20} = 2.203$ 



Hence, there is insufficient evidence to conclude that standard variance of processors from batch 1 is greater than the standard deviation of batch 2.

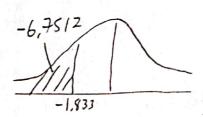
| -   | <u></u> | 7 |
|-----|---------|---|
| ESI | 100     | + |

| Ho: 210=0 | 1.             |
|-----------|----------------|
|           | df=9           |
| H,; No<0  | $\alpha$ =0.05 |

(In order for the training to be effective, the before training must be less than after training, hence mean must less than zero.)

| hence mean | must less | than zero.)       | 2 ( ×1 <sup>2</sup> |
|------------|-----------|-------------------|---------------------|
| 2) Before  | After     | $D = (X_1 - X_2)$ | $D^2 = (x, -x_2)^2$ |
| 203        | 225       | -22               | 484                 |
| 390        | 410       | -20               | 400                 |
| 389        | 402       | -13               | 169                 |
| 279        | 285       | -6                | 36                  |
| 333        | 355       | -22               | 484                 |
| 213        | 240       | -27               | 729                 |
| 410        | 444       | -34               | 1156                |
| 364        | 370       | -6                | 36                  |
| 470        | 501       | -31               | 961                 |
| 464        | 490       | -26               | 676                 |
|            |           | T0- 207           | T 02 C121           |

$$ext{4}$$
  $ext{c} = t_{0.05,9} = -1.833$ 



Since the test statistic value is smaller than critical value, which is -6. 7512 < -1.833, we reject the null hypothesis. Hence, there is sufficient evidence to conclude that the training can increase the number of words spell correctly.

| suestion 8 |      |        |        |       |           |
|------------|------|--------|--------|-------|-----------|
| )          | 4    | X.     | Xy     | . 42  | $\chi^2$  |
|            | 2    | 0,27   | 0.54   | 74    | 0.0729    |
|            | 3    | 1,41   | 4.23   | q     | 1.9881    |
|            | 3    | 2,19   | 6,57   | 9     | 4,7961    |
| Ī          | 6    | 2.83   | 16,98  | 36    | 8,0089    |
|            | 4    | 1,19   | 8.76   | 16    | 4.7961    |
|            | 2    | 1.81   | 3,62   | 4     | 3.2761    |
|            | \    | 0.85   | 0.85   | 1     | 0.7125    |
|            | 5    | 3,05   | 15.25  | 25    | 9,3025    |
| -          | Σ=26 | Z=14.6 | 5=26.8 | ∑=19H | Σ=32.9632 |

$$r = \frac{\sum xy - (\sum x \sum y)/n}{\left[(\sum y^2) - (\sum y)^2/n\right]}$$

$$\Gamma = \frac{56.8 - (26 \times 14.6) / 8}{\sqrt{[(32.9632) - (14.6)^2/8][(104) - (26)^2/8]}}$$

$$= \frac{1 - r^2}{\sqrt{1 - r^2}}$$

$$= \frac{0.8424}{\sqrt{1 - (0.84)4}}$$

$$= 3.8293$$

$$6.7 = 8 - 2 = 6$$

Since t = 3.8293 7 to 05,7 = 2.447, the null hypothesis is rejected. There is tinear correlation exists between weight of plastic usage and size of household.

iii) 
$$H_0$$
:  $p=0$   
 $H_i$ :  $p \neq 0$   
 $t = 3.8293$   
 $t = 3.707$ 

i. Since t=3.82937t0,05,6=3.707, the decision does not change. The null hypothesis is rejected. There is linear correlation exists between weight of plastic usage and size of household.

| Juestion 9                                                                                              |       |        |         |          |
|---------------------------------------------------------------------------------------------------------|-------|--------|---------|----------|
| C                                                                                                       | V     | 2      | xy      | χ²       |
| 1                                                                                                       | 24    | 97     | 2328    | 9409     |
|                                                                                                         | 29    | 85     | 2465    | 7225     |
|                                                                                                         | 26    | 98     | 2548.   | dP Ort   |
|                                                                                                         | 777   | 105    | 2520    | 11025    |
|                                                                                                         | 214   | 120    | 088C    | 14400    |
|                                                                                                         | 22    | 151    | 3322    | 22801    |
|                                                                                                         | 23    | 140    | 3220    | 19 600   |
|                                                                                                         | 23    | 134    | 3082    | 17956    |
|                                                                                                         | 2-1   | 146    | 3066    | 21316    |
|                                                                                                         | 5=316 | Σ=1076 | Z=2543/ | I=133336 |
| $= \frac{25431 - \frac{(21620076)}{9}}{[33336 - \frac{(1076)^{2}}{9}]}$ $= -0.0837[99394]$              |       |        |         |          |
| $b_0 = \frac{216}{9} - (-0.08371993941)(\frac{0.076}{9})$ $= 34.00918387$ $\hat{y} = 34.0092 - 0.0837x$ |       |        |         |          |
| = 23.5467kM                                                                                             |       |        |         |          |

Shestion 10

Ho: 
$$A_1 = U_2 = U_3$$

H;  $a^4$  least one mean is different

(ategory 1: Memory booster

 $x = 70 \pm 77 \pm 83 \pm 90497 = 83.4$ 
 $x = 70 \pm 77 \pm 83 \pm 90497 = 83.4$ 
 $x = 70 \pm 77 \pm 83 \pm 90497 = 83.4$ 
 $x = 70 \pm 77 \pm 83 \pm 90497 = 83.4$ 
 $x = 70 \pm 77 \pm 83 \pm 90497 = 83.4$ 
 $x = 10.5972$ 

(ategory 2: Placebo

 $x = 37 \pm 43 \pm 50 \pm 57 \pm 63 = 50$ 
 $x = 37 \pm 43 \pm 50 \pm 57 \pm 63 = 50$ 
 $x = 10.4403$ 

(ategory 3: Without Treatment

 $x = 3 \pm 10 \pm 11 \pm 23 \pm 30 = 16.6$ 
 $x = 3 \pm 10 \pm 11 \pm 23 \pm 30 = 16.6$ 
 $x = 10.5972$ 
 $x = 10.5972$ 

mean between samples

 $x = 83.4 \pm 50 \pm 16.6$ 
 $x = 10.5972$ 
 $x = 10.5972$ 

Variance between samples  $15\frac{1}{5} = 5(33.4)^{2}$  = 5577.8

Variance within samples
$$5^{2}_{p} = \frac{(10.5972)^{2}+(10.4403)^{2}+(10.5972)^{2}}{3}$$
= 111.2004

Test statisticy 
$$F$$
  
 $F = \frac{NS_{\pi}^{2}}{S_{p}^{2}}$   
 $= \frac{5577.8}{111.2004}$   
 $= 50.15991$ 

d.f.  
numerator = 
$$k-1=3-1=2$$
  
denominator =  $k(n-1)=3(5-1)=12$   
 $a=0,01$   
 $f_{(1)}=6.93$ 

Since  $F=33.4309 > F_{C.V.}=6.93$ , the null hypothesis is fail to reject. There is sufficient evidence to support the claim that the treatments will have different effects.