SECI 2143

# PROBABILITY \& STATISTICAL DATA ANALYSIS 

## PROJECT 2

# The Study of Life Expectancy, Growth Rate and Mortality Rate among Countries 

LECTURER:<br>DR SHARIN HAZLIN BINTI HUSPI

SUBMITTED BY: GROUP 03
Felicia Chin Hui Fen (A20EC0037)

Mek Zhi Qing (A20EC0077)
Rohaizaazira Binti Mohd Zawawi (A20EC0138)

Zereen Teo Huey Huey (A20EC0173)

## TABLE OF CONTENT

1. Introduction ..... 1
2. Dataset. ..... 1
3. Data analysis ..... 2
i. Hypothesis 1 Sample Test ..... 2
ii. Correlation Test ..... 2
iii. Regression Test ..... 3
iv. Goodness of Fit Test ..... 5
4. Conclusion ..... 7
5. Reference ..... 7
6. Appendix ..... 8

## INTRODUCTION

The world's population continues to grow, and changes in growth rates and death rates indicate that there is a great uncertainty in its long-term development. The world population is 7.6 billion now, and it is still growing. The examples of countries with large populations are China, India, and the US while the countries with small populations are Vatican City, The Republic of Nauru, and Tuvalu (Vincej, 2020). Life expectancy is an estimate of the average number of additional years a person can expect at a given age. (Bezy, 2021) Compared with more developed countries, life expectancy in less developed countries is relatively low. In some less developed countries, due to high infant mortality, life expectancy at birth may be lower than life expectancy at 1 year. In this report, we want to study the relationship of life expectancy, mortality rate and growth rate among countries.

## DATASET

The dataset that we studied is a secondary data that is presented in an excel file (CSV). The dataset is provided by our lecturer from an online resource. The sample size of the dataset is 198 countries. This dataset contains information about countries' which is country name, population, growth rate, mortality rate, life expectancy, and the number of individuals under the age of 15 . We will analyze the data through a few tests which are 1 -sample hypothesis test, correlation, regression, and Goodness of Fit test.

| Variable | Level of Measurement |
| :--- | :--- |
| Country | Nominal |
| Population | Ratio |
| Growth Rate | Ratio |
| Mortality Rate | Ratio |
| Individual Under 15 | Ratio |
| Life expectancy | Ratio |

Table 1: Data type for variable in the dataset

## DATA ANALYSIS

## Hypothesis 1 Sample Test

According to the World Health Organization (WHO), the world mortality rate is 8.9 million (World Health Organization, n.d ). We wish to determine whether the sample mean mortality rate is smaller than 8.90 or not at 0.05 significance level. We assume the population mean mortality rate is 8.90 .

Variables used in the test is:
n = sample size
$\mathrm{s}=$ standard deviatio
$\mu$ is the population mean of the countries mortality rate.
$\overline{\mathrm{x}}=$ the sample mean of the countries mortality rate.
$\mathrm{H}_{0}: \mu=8.90$ (The mean mortality rate is equal to 8.90 )
$\mathrm{H}_{1}: \mu<8.90$ (The mean mortality rate is smaller than 8.90)
Significance level, $\alpha=0.05$
The population variance is unknown. However, since the sample size is 198 which is sufficiently large, we can assume that the sample is normally distributed. Z test is applied in this test and is calculated using the R program. This is a left tailed test, thus, will reject the null hypothesis if the Z value calculated is smaller than the -Z -statistic. The Z -value calculated is -20.83545 while the -Z -statistic is -1.644854 . Z -value is smaller than -Z -statistic. Thus, we will reject the null hypothesis since the Z -value calculated is fall within the critical region. As a result, at $5 \%$ significance level, we have sufficient evidence to conclude that the sample mean mortality rate is smaller than 8.90 .

## Correlation

The correlation test is carried out to determine whether there is linear correlation between growth rate and mortality rate. The method Pearson's product-moment correlation is used to calculate the correlation between mortality rate and growth rate among 198 countries on 5\% significance level. The null hypothesis and alternative hypothesis are:
$H_{0}: p=0$ (There is no linear correlation between growth rate and mortality rate)
$H_{1}: p \neq 0$ (There is linear correlation between growth rate and mortality rate)


Figure 1: Scatter plot of Mortality Rate Based on Growth Rate
Based on the result calculated, $\mathrm{t}=8.2271>\mathrm{t}_{0.975,196}=1.972141$, hence the null hypothesis is rejected. There is sufficient evidence to conclude that there is linear correlation between growth rate and mortality rate on $5 \%$ significance level. The correlation coefficient is +0.5066449 which indicates that there is a moderate positive linear relationship between mortality rate and growth rate. The higher the growth rate, the higher the mortality rate. The correlation can also be predicted based on the scatter plot.

## Regression



Figure 2: The scatter plot of life expectancy against mortality rate
Based on Figure 2, the regression test is carried out with the objective of determining the relationship between the life expectancy and the mortality rate of the countries given at the significance level of 0.05 . The dependent variable (y) used is the mortality rate while the independent variable ( x ) used is the life expectancy.
$H_{0}: \beta_{1}=0$ (There is no linear relationship between mortality rate and life expectancy)
$H_{1}: \beta_{1} \neq 0$ (There is linear relationship exist between mortality rate and life expectancy)

Through regression analysis, there exist a negative linear relationship between the life expectancy and mortality rate with the equation of:

$$
\hat{\mathrm{y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}
$$

where,
$\hat{y}=$ Estimated y value
$\mathrm{x}=$ Independent variable
$\mathrm{b}_{0}=$ Estimate of the regression intercept $=24.1564$
$b_{1}=$ Estimate of the regression slope $=-0.3006$

Therefore, the equation for this estimated regression model is:

$$
\hat{y}=24.1564-0.3006 x
$$

From the value of $b_{0}=24.1564$, it can be determined that the rate of mortality is 24.1564 when the life expectancy is 0 since it is the estimated average value of $y$ when the value of $x$ is zero ( $y$-intercept). While for the value of $b_{1}=-0.3006$, it can be indicated that the mortality rate will decrease 0.3006 on average when the life expectancy increases. Therefore, we have sufficient evidence to conclude that there exists a negative linear relationship between the life expectancy and the mortality rate of the countries given.

For the coefficient of determination, the equation shown below is required to calculate it as:

$$
\mathrm{R}^{2}=\mathrm{SSR} / \mathrm{SST}
$$

where,

$$
\begin{aligned}
& \mathrm{R}^{2}=\text { Coefficient of determination } \\
& \mathrm{SSR}=\text { regression sum of squares }=\sum(\hat{\mathrm{y}}-\overline{\mathrm{y}})^{2} \\
& \mathrm{SST}=\text { total sum of squares }=\sum(\mathrm{y}-\overline{\mathrm{y}})^{2}
\end{aligned}
$$

therefore,

$$
\begin{aligned}
& \mathrm{R}^{2}=\sum(\hat{\mathrm{y}}-\overline{\mathrm{y}})^{2} / \Sigma(\mathrm{y}-\overline{\mathrm{y}})^{2} \\
& =0.8299
\end{aligned}
$$

Percentage of $\mathrm{R}^{2}=0.8299 \times 100 \%=82.99 \%$
Therefore, it can be determined that $82.99 \%$ of the variation in mortality rate is explained by variation in life expectancy and the linear relationship between the life expectancy and the mortality rate of the countries given is quite strong since the $R^{2}=0.8299$ is near to 1 .

## Goodness of Fit Test

|  | Datanames | Life <br> Expectancy |
| ---: | :--- | :--- |
|  | Afghanistan | 44.0 |
|  | Albania | 76.5 |
| $\mathbf{3}$ | Algeria | 72.5 |
| $\mathbf{4}$ | American Samoa | 72.5 |
| $\mathbf{5}$ | Andorra | 42.5 |
| $\mathbf{6}$ | Angola | 75.5 |
| $\mathbf{7}$ | Anguilla | 71.5 |
| $\mathbf{8}$ | Antarctica | 74.0 |
| $\mathbf{9}$ | Antigua and Barbuda | 81.5 |
| $\mathbf{1 0}$ | Arctic Ocean | 80.0 |
|  |  |  |

Table 2: Observed Life Expectancy for the 10 Countries Data
Goodness of fit test is carried out to investigate is there any differences of the proportion of life expectancy between 10 countries data at $5 \%$ significance level.

Variable used in the test:
n : number of tested data
observed: observed value of the life expectancy of 10 countries data expprob: expected proportion of the life expectancy for the 10 countries data expected: expected value of the life expectancy of 10 countries data exp: result of square difference of the observed value minus expected value and divide by expected value,
exp: (observed-expected) ${ }^{2}$
expected
$x^{2}$ : summation of all value of exp
Let $\quad$ P1 $=$ Proportion of life expectancy in Afghanistan
P2 = Proportion of life expectancy in Albania
P3 = Proportion of life expectancy in Algeria
P4 = Proportion of life expectancy in American Samoa
P5 = Proportion of life expectancy in Andorra
P6 = Proportion of life expectancy in Angola
P7 = Proportion of life expectancy in Anguilla
P8 = Proportion of life expectancy in Antarctica
P9 = Proportion of life expectancy in Antigua and Barbuda
P10 $=$ Proportion of life expectancy in Arctic Ocean
$\mathrm{H}_{0}: \mathrm{P} 1=\mathrm{P} 2=\mathrm{P} 3=\mathrm{P} 4=\mathrm{P} 5=\mathrm{P} 6=\mathrm{P} 7=\mathrm{P} 8=\mathrm{P} 9=\mathrm{P} 10=69.05$ (The proportion of the life expectancy of the 10 countries data are the same, which is 69.05.)
$\mathrm{H}_{1}$ : At least one of the proportions of life expectancy is different from others.
Significance level, $\alpha=0.05$
Degree of freedom $=10-1=9$
Reject the null hypothesis if the $\mathrm{X}^{2}{ }_{\text {stat }}>\mathrm{X}^{2}{ }_{(0.05,9)}=16.91898$

| Countries Data | Life Expectancy | Expected Life <br> Expectancy | $\exp$ |
| :--- | :---: | :---: | :---: |
| Afghanistan | 44.00 | 69.05 | 9.08765387 |
| Albania | 76.50 | 69.05 | 0.80380159 |
| Algeria | 72.50 | 69.05 | 0.17237509 |
| American Samoa | 72.50 | 69.05 | 0.17237509 |
| Andorra | 42.50 | 69.05 | 10.20858074 |
| Angola | 75.50 | 69.05 | 0.60249819 |
| Anguilla | 71.50 | 69.05 | 0.08692976 |
| Antarctica | 74.00 | 69.05 | 0.35485156 |
| Antigua and Barbuda | 81.50 | 69.05 | 2.24478639 |
| Arctic Ocean | 80.00 | 69.05 | 1.73645909 |

Table 3: Comparison of observed and expected life expectancy of 10 Countries Data

By using R program, we calculate the chi-square value,

$$
\mathrm{X}^{2} \text { stat }=25.47031
$$

Since the chi-square test statistics value is 25.47031 which is greater than the chi-square statistical value, 16.91898 , we reject the null hypothesis that the distribution of life expectancy for the 10 countries data are different. Thus, at $5 \%$ significance level, we have sufficient evidence to conclude that the proportion of life expectancy of these 10 countries is different from each other.

## CONCLUSION

Based on all the findings through this report, a few conclusions can be made. First, the sample mean mortality rate of our dataset is lower than the world mortality rate. Next, there is a moderate relationship between growth rate and mortality rate among countries. The higher the growth rate, the higher the mortality rate. Thirdly, there is a negative linear relationship between the life expectancy and the mortality of the countries given. Lastly, for the Goodness of fit test, we can conclude that the proportion of life expectancy in every country is different. It is because of a few factors such as life standard and health standard. Each country has its own life standard and health standard. So, there are reasons why life expectancy in each country is different.

Through this study, we have learned how to use R which is a very useful tool in helping us to summarize the data. We also understand more about the topics we learnt before by applying them to solve the problems. We hope we can have the chance to learn more and apply it in our future studies.

## REFERENCE

Bezy, J. (2021). life expectancy | Definition \& Facts. Retrieved 15 June 2021, from https://www.britannica.com/science/life-expectancy

Vincej, V. (2020). 10 Smallest Countries in the World by Population - [2021]. Retrieved 15 June 2021, from https://www.travelinglifestyle.net/smallest-countries-world-bypopulation/

World Health Organization. (n.d.). Global Health Estimates: Life expectancy and leading causes of death and disability. Retrieved June 14, 2021, from https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates

## APPENDIX

Processed Dataset

|  | Population | Growth | under <br> Datanames | Life <br> Expectancy | Mortality |
| :--- | ---: | ---: | :--- | ---: | ---: |
| Afghanistan | 27145300 | 4.6 | 47 | 44 | 15.7 |
| Albania | 3190000 | 0.4 | 25 | 76.5 | 1.9 |
| Algeria | 33857900 | 1.5 | 28 | 72.5 | 3.1 |
| American Samoa | 57300 | 2.3 | 39 | 72.5 | 0.6 |
| Andorra | 17024100 | 2.8 | 46 | 42.5 | 13.2 |
| Angola | 39531100 | 1 | 26 | 75.5 | 1.3 |
| Anguilla | 3002300 | -0.4 | 19 | 71.5 | 2.9 |
| Antarctica | 103900 | 1.5 | 22 | 74 | 1.7 |
| Antigua and Barbuda | 20743200 | 1.1 | 19 | 81.5 | 0.4 |
| Arctic Ocean | 8360700 | 0.2 | 15 | 80 | 0.4 |
| Argentina | 8467200 | 0.6 | 23 | 67.5 | 7.2 |
| Armenia | 331300 | 1.4 | 27 | 73.5 | 1.4 |
| Aruba | 752600 | 1.6 | 25 | 75.5 | 1.1 |
| Ashmore and Cartier Islands | $1.59 \mathrm{E}+08$ | 1.9 | 34 | 64 | 5.2 |
| Atlantic Ocean | 293900 | 0.3 | 18 | 77 | 1 |
| Australia | 9688800 | -0.6 | 15 | 69 | 0.9 |
| Austria | 10457300 | 0.2 | 17 | 79 | 0.4 |
| Azerbaijan | 287700 | 2.1 | 37 | 76 | 1.6 |
| Bahamas | 9032800 | 3.2 | 44 | 57 | 9.8 |
| Bahrain | 658500 | 2.2 | 31 | 65.5 | 4.5 |
| Baltic Sea | 9524600 | 2 | 37 | 65.5 | 4.6 |
| Baker Island | 3934800 | 0.3 | 17 | 74.5 | 1.2 |
| Bangladesh | 1881500 | 0.1 | 35 | 50.5 | 4.6 |
| Barbados | $1.92 \mathrm{E}+08$ | 1.4 | 27 | 72.5 | 2.4 |
| Bassas da India | 390100 | 2.3 | 29 | 77.5 | 0.6 |
| Belarus | 7638800 | -0.7 | 13 | 73 | 1.2 |
| Belgium | 14784300 | 3.2 | 46 | 52.5 | 10.4 |
| Belize | 8508200 | 3 | 44 | 49.5 | 9.9 |
| Benin | 14443700 | 2 | 36 | 59.5 | 6.3 |
| Bermuda | 18549200 | 1.9 | 41 | 50.5 | 8.8 |
| Bhutan | 32876000 | 1 | 17 | 80.5 | 0.5 |
| Bolivia | 530400 | 2.4 | 38 | 71 | 2.5 |
| Borneo | 4342700 | 1.3 | 42 | 44.5 | 9.7 |
| Bosnia and Herzegovina | 10780600 | 3.4 | 46 | 50.5 | 11.9 |
| Botswana | 149300 | 0.4 | 16 | 79 | 0.5 |
| Bouvet Island | 16634800 | 1.1 | 24 | 78.5 | 0.7 |
| China | $1.33 \mathrm{E}+09$ | 0.6 | 21 | 73 | 2.3 |
| British Virgin Islands | 7206100 | 1.2 | 14 | 82 | 0.4 |
| Brunei | 481100 | 0.7 | 14 | 81 | 0.7 |
| Bulgaria | 46156000 | 1.6 | 29 | 73 | 1.9 |
| Burkina Faso | 2.6 | 42 | 65 | 4.8 |  |
| Burundi | 42 | 55.5 | 7 |  |  |
|  |  |  |  |  |  |


| Cambodia | 18000 | -1 | 30 | 71 | 2.1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cameroon | 4467600 | 1.9 | 27 | 78.5 | 1 |
| Canada | 19261800 | 1.6 | 41 | 48.5 | 11.7 |
| Cape Verde | 4555400 | 0.2 | 15 | 75.5 | 0.6 |
| Cayman Islands | 11267900 | 0.3 | 18 | 78 | 0.5 |
| Central African Republic | 854700 | 1.2 | 19 | 79 | 0.6 |
| Chad | 10186300 | -0.1 | 14 | 76.5 | 0.4 |
| Chile | 23790200 | 0.6 | 23 | 67 | 4.8 |
| China | 62635700 | 2.8 | 47 | 46.5 | 11.4 |
| Christmas Island | 5442100 | 0.3 | 19 | 78.5 | 0.4 |
| Clipperton Island | 833000 | 2.1 | 37 | 55 | 8.5 |
| Cocos Islands | 9759700 | 1.5 | 33 | 72 | 3 |
| Colombia | 13341200 | 1.4 | 32 | 75 | 2.1 |
| Comoros | 75497900 | 1.9 | 33 | 71.5 | 2.9 |
| Cook Islands | 6857300 | 1.8 | 33 | 72 | 2.2 |
| Coral Sea Islands | 507500 | 2.3 | 42 | 51.5 | 9.2 |
| Costa Rica | 4850800 | 4.3 | 43 | 58 | 5.5 |
| Cote dlvoire | 1335300 | -0.6 | 15 | 71.5 | 0.7 |
| Croatia | 83099200 | 2.4 | 44 | 53 | 8.7 |
| Cuba | 838700 | 0.9 | 32 | 69 | 2 |
| Curacao | 5276900 | 0.3 | 17 | 79 | 0.4 |
| Cyprus | 61647400 | 0.4 | 18 | 80.5 | 0.4 |
| Czech Republic | 202100 | 2.6 | 34 | 76.5 | 1.3 |
| Democratic Republic of the Congo | 262800 | 1.7 | 27 | 74.5 | 0.8 |
| Denmark | 1330600 | 1.7 | 35 | 56.5 | 5.4 |
| Djibouti | 1708700 | 2.8 | 41 | 59.5 | 7.4 |
| Dominica | 4395400 | -1.1 | 18 | 71 | 3.9 |
| Dominican Republic | 82599500 | 0.1 | 14 | 79.5 | 0.4 |
| East Timor | 23478400 | 2.1 | 38 | 60 | 5.7 |
| Ecuador | 11146900 | 0.3 | 14 | 79.5 | 0.7 |
| Egypt | 105700 | 0.3 | 33 | 68.5 | 3.4 |
| El Salvador | 444900 | 0.9 | 24 | 79 | 0.7 |
| Equatorial Guinea | 173300 | 1.8 | 29 | 75.5 | 0.9 |
| Eritrea | 13353900 | 2.4 | 43 | 70.5 | 3 |
| Estonia | 9370100 | 2.2 | 43 | 56 | 10.3 |
| Ethiopia | 1695000 | 3 | 48 | 46.5 | 11.3 |
| Europa Island | 737900 | 0.2 | 31 | 67 | 4.3 |
| Falkland Islands Islas Malvinas | 9597900 | 1.4 | 37 | 61 | 4.9 |
| Faroe Islands | 7106000 | 2.3 | 39 | 70.5 | 2.8 |
| Fiji | 10029600 | -0.3 | 15 | 73 | 0.7 |
| Finland | 301000 | 0.9 | 22 | 81.5 | 0.3 |
| India | $1.17 \mathrm{E}+09$ | 1.6 | 32 | 64.5 | 5.5 |
| French Guiana | $2.32 \mathrm{E}+08$ | 1.3 | 28 | 71 | 2.7 |
| French Polynesia | 71208400 | 0.9 | 27 | 71 | 3.1 |
| French Southern and Antarctic Lands | 28993400 | 2.8 | 41 | 59.5 | 8.2 |


| Gabon | 4300900 | 1.7 | 21 | 78.5 | 0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gambia | 77600 | -0.1 | 18 | 77 | 0.2 |
| Gaza Strip | 6927700 | 2 | 28 | 81 | 0.5 |
| Georgia | 58876800 | 0.1 | 14 | 80.5 | 0.5 |
| Germany | 2713800 | 0.5 | 31 | 72.5 | 1.4 |
| Ghana | $1.28 \mathrm{E}+08$ | 0.2 | 14 | 82.5 | 0.3 |
| Gibraltar | 5924200 | 2.7 | 36 | 72.5 | 1.9 |
| Glorioso Islands | 15421900 | -0.3 | 24 | 67 | 2.4 |
| Greece | 37537700 | 2.2 | 43 | 54 | 6.4 |
| Greenland | 2851100 | 3.7 | 23 | 78 | 0.8 |
| Grenada | 5316500 | 1.2 | 30 | 66 | 5.3 |
| Guadeloupe | 5859400 | 2.3 | 38 | 64.5 | 5.1 |
| Guam | 2277000 | -0.6 | 14 | 72.5 | 1 |
| Guatemala | 4099100 | 1 | 28 | 72 | 2.2 |
| Guernsey | 2007800 | 0.1 | 40 | 42.5 | 6.5 |
| Guinea | 3750300 | 1.4 | 47 | 46 | 13.3 |
| Guinea-Bissau | 6160500 | 2 | 30 | 74.5 | 1.8 |
| Guyana | 3389900 | -0.4 | 16 | 72.5 | 0.9 |
| Haiti | 466600 | 1.3 | 18 | 79 | 0.5 |
| Heard Island and McDonald Islands | 19683400 | 2.8 | 43 | 59.5 | 6.6 |
| Honduras | 13925100 | 2.3 | 47 | 48 | 8.9 |
| Hong Kong | 26571900 | 1.9 | 30 | 74.5 | 0.9 |
| Howland Island | 305600 | 2.5 | 32 | 68.5 | 3.4 |
| Hungary | 12336800 | 3 | 48 | 54.5 | 12.9 |
| Iceland | 406600 | 0.5 | 17 | 79 | 0.6 |
| India | 54600 | 3.5 | 42 | 67.5 | 3.7 |
| Indian Ocean | 398700 | 0.5 | 21 | 79.5 | 0.7 |
| Indonesia | 3123800 | 3 | 40 | 64 | 6.3 |
| Iran | 1261600 | 1 | 24 | 73 | 1.4 |
| Iraq | $1.07 \mathrm{E}+08$ | 1.3 | 30 | 76.5 | 1.7 |
| Ireland | 111100 | 0.6 | 38 | 68.5 | 3.4 |
| Isle of Man | 2678800 | 1.2 | 27 | 67 | 4 |
| Israel | 598000 | -0.1 | 19 | 74.5 | 2.2 |
| Italy | 31224100 | 1.5 | 29 | 71 | 3.1 |
| Jamaica | 21396900 | 2 | 44 | 42 | 9.6 |
| Jan Mayen | 48798200 | 1.1 | 26 | 62 | 6.6 |
| Japan | 2074100 | 1.4 | 37 | 52.5 | 4.2 |
| Jarvis Island | 28196000 | 2.1 | 38 | 63.5 | 5.4 |
| Jersey | 16418800 | 0.5 | 18 | 80 | 0.5 |
| Johnston Atoll | 191600 | 0.8 | 21 | 75 | 1.5 |
| Jordan | 241700 | 1.9 | 26 | 76.5 | 0.6 |
| Juan de Nova Island | 4178500 | 1.1 | 21 | 80 | 0.5 |
| Kazakhstan | 5603200 | 2 | 37 | 73 | 2.1 |
| Kenya | 14225500 | 3.4 | 48 | 57 | 11.1 |
| Kerguelen Archipelago | $1.48 \mathrm{E}+08$ | 2.2 | 44 | 46.5 | 10.9 |


| Kingman Reef | 1800 | -2.2 | 33 | 70.5 | 2.9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kiribati | 4698100 | -1 | 19 | 80.5 | 0.3 |
| Kosovo | 4017500 | 3.2 | 45 | 73.5 | 1.8 |
| Kuwait | 2595100 | 1 | 32 | 75.5 | 1.2 |
| Kyrgyzstan | $1.64 \mathrm{E}+08$ | 2 | 36 | 65.5 | 6.7 |
| Laos | 19100 | 0.7 | 24 | 71 | 1.8 |
| Latvia | 3343400 | 1.8 | 30 | 75.5 | 1.8 |
| Lebanon | 6331000 | 2.1 | 40 | 57.5 | 6.1 |
| Lesotho | 6127100 | 2.4 | 35 | 72 | 3.2 |
| Liberia | 27902800 | 1.5 | 31 | 71.5 | 2.1 |
| Libya | 87960100 | 1.8 | 35 | 72 | 2.3 |
| Liechtenstein | 38082000 | -0.1 | 15 | 75.5 | 0.7 |
| Line Islands | 10623000 | 0.5 | 16 | 78 | 0.5 |
| Lithuania | 3990500 | 0.6 | 21 | 79 | 0.7 |
| Luxembourg | 840600 | 5.9 | 21 | 75.5 | 0.8 |
| Macau | 48223900 | 0.4 | 18 | 78.5 | 0.4 |
| Macedonia | 3793600 | -0.3 | 19 | 68.5 | 1.6 |
| Madagascar | 806700 | 1.6 | 26 | 76.5 | 1.3 |
| Malawi | 21437900 | -0.4 | 15 | 72.5 | 1.5 |
| Malaysia | $1.42 \mathrm{E}+08$ | -0.5 | 15 | 66 | 1.7 |
| Maldives | 9724600 | 2.4 | 43 | 46.5 | 11.2 |
| Mali | 164900 | 0.8 | 27 | 74 | 1.3 |
| Malta | 120400 | -0.1 | 28 | 71.5 | 2.3 |
| Marshall Islands | 187000 | 0.8 | 40 | 72 | 2.2 |
| Martinique | 24734500 | 2.7 | 34 | 73 | 1.9 |
| Mauritania | 12378500 | 2.4 | 42 | 63 | 6.6 |
| Mauritius | 9858400 | -0.1 | 18 | 74 | 1.2 |
| Mayotte | 5865900 | 4.1 | 43 | 42.5 | 16 |
| Mediterranean Sea | 4436300 | 1.5 | 18 | 80 | 0.3 |
| Mexico | 5390000 | 0 | 16 | 75 | 0.7 |
| Micronesia | 2001500 | 0 | 14 | 78 | 0.5 |
| Midway Islands | 495700 | 2.6 | 40 | 63.5 | 5.5 |
| Moldova | 8698500 | 3.2 | 44 | 48 | 11.6 |
| Monaco | 48576800 | 0.8 | 32 | 49.5 | 4.5 |
| Mongolia | 44279200 | 1.1 | 15 | 81 | 0.4 |
| Montenegro | 19299200 | 0.9 | 23 | 72.5 | 1.1 |
| Montserrat | 38560500 | 1.9 | 40 | 58.5 | 6.5 |
| Morocco | 458000 | 0.7 | 29 | 70.5 | 2.8 |
| Mozambique | 1141400 | 0.2 | 39 | 39.5 | 7.1 |
| Myanmar | 9119000 | 0.4 | 17 | 81 | 0.3 |
| Namibia | 7484000 | 0.2 | 16 | 81.5 | 0.4 |
| Nauru | 19928500 | 2.5 | 36 | 74 | 1.6 |
| Navassa Island | 6736000 | 1.1 | 38 | 66.5 | 6 |
| Nepal | 63883700 | 0.2 | 21 | 70.5 | 1.1 |
| Netherlands | 1154800 | 0.9 | 45 | 61 | 6.7 |
| New Caledonia | 6585100 | 2.7 | 43 | 58.5 | 8.9 |


| New Zealand | 100300 | 0.4 | 37 | 73 | 1.9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nicaragua | 1333300 | 0.3 | 21 | 70 | 1.2 |
| Niger | 10327300 | 1.1 | 25 | 74 | 2 |
| Nigeria | 74876700 | 1.4 | 27 | 71.5 | 2.8 |
| Niue | 4965300 | 1.4 | 30 | 63.5 | 7.5 |
| Norfolk Island | 30883800 | 3.4 | 49 | 51.5 | 7.7 |
| North Korea | 46205400 | -1.1 | 14 | 68 | 1.3 |
| North Sea | 4380400 | 6.5 | 20 | 79 | 0.8 |
| Northern Mariana Islands | 60768900 | 0.3 | 18 | 79.5 | 0.5 |
| Norway | 40453500 | 2 | 44 | 52.5 | 7.3 |
| USA | $3.06 \mathrm{E}+08$ | 1 | 20 | 78.5 | 0.6 |
| Pacific Ocean | 111400 | 0.2 | 23 | 79 | 0.9 |
| Pakistan | 3339700 | 0.7 | 23 | 76.5 | 1.3 |
| Palau | 27372300 | 1.5 | 32 | 67 | 5.5 |
| Palmyra Atoll | 226200 | 2 | 39 | 70 | 2.8 |
| Panama | 87375200 | 1.4 | 28 | 74 | 2 |
| Papua New Guinea | 480000 | 2.6 | 30 | 66 | 4.4 |
| Paracel Islands | 22389200 | 3.1 | 45 | 62.5 | 5.9 |
| Paraguay | 11922000 | 1.7 | 46 | 42 | 9.3 |
| Peru | 13349400 | 0.6 | 38 | 43.5 | 5.8 |

