
SECV2213-01

FUNDAMENTAL OF COMPUTER GRAPHICS

FINAL PROJECT REPORT

LECTURER: DR. GOH EG SU

NAME MATRIC NUMBER

ONG YIN REN A19EC0204

NG JING ER A19EC0115

PROJECT REPORT

1. INTRODUCTION

This project aims to implement 3D object modeling, hierarchical modeling, proper

camera, lighting and shading models using C/C++, OpenGL and GLUT based on this theme

which is “Cartoon Moving Character”. Hence, in our project, we have created a cartoon

model which has SpongeBob as our main character.

In order to better understand this report, we will be divided into six parts which are

introduction, overall concept and design, implementation and achievement, discussion and

conclusion. In part 2 overall concept and design, we will discuss the function of the

keyboard button to control the movement of the output. While in part3 implementation and

achievements, we will be discussing how we use this technique 3D modelling, hierarchical

modelling and 3D transformation to create the SpongeBob component and using lighting.

Shading, projection and camera model techniques to make the output more attractive.

Furthermore, in part 4 discussion, we will be discussing more details about the

function of OpenGL that we implement in this project. In conclusion part will be the

conclusion and appreciation of our report. At the end of this report, we have provided the

video link that displays the entire project output.

2. OVERALL CONCEPT/DESIGN

For our model component, it is made up of different parts which are body, eyes,

bottom, hands and face. The body and legs are in cube shape and cuboid shape respectively.

Hence, we use glutSolidCube to create the leg object and GL_POLYGON to create the body

object which required glVertex3f to set the position. The transformation is implemented

using openGL functions such as glRotatef and glTranslatef to perform rotation of angle

degrees around the vector x,y,z which is adjusted according to our output requirement.

Light and bright colours are chosen as the color for our model design. The color

effect is adjusted by the glColor3f function. The reason for choosing these kinds of colors is

because it will display a significant change on our 3D model of SpongBob which involves

the lighting and shadow techniques that we had applied. Besides using lightning and

1

shadowing techniques, we also applied the sound effect into our project to result in a more

attractive output. In order to create a more realistic 3D environment, we had applied the

projection and camera model technique into our project. This technique is used to compute

the 3D scene.

In order to make interaction when displaying the output, we had applied the

keyboard function to design the movement of our project. For example, users can press the

button of the alphabet “ w” to adjust the movement of the left hand of the character , “o” to

enable the music on , “n” to enable the lightning and GLUT_Key_Up to enlarge the scene.

Besides using the keyboard function, we also design using a mouse for the user to move the

scene freely left and right by applying the glutMouseFunc.

Keyboard Button Function

a Move the left palm of the character in an anticlockwise
direction.

d Move the left palm of the character in a clockwise direction.

w Move up and down the left hand of the character

A Move the right palm of the character in an anticlockwise
direction.

D Move the right palm of the character in a clockwise direction.

W Move up and down the right hand of the character

O & o Enable for music on

N & n Enable for music off

l Enable for lightning

m Disable for lightning

2

Keyboard Button Function

glut_Key_Up Enlarge the output

glut_Key_Down Smaller the output

glut_Key_Left Move up the camera view

glut_Key_Right Move down the camera view

mouseMove (left) Move the camera view to left

mouseMove (right) Move the camera view to right

3. IMPLEMENTATION & ACHIEVEMENTS

To create an attractive output of the project, we applied different GLUT functions

and techniques that we had learnt in previous exercises. We created the cartoon model of

SpongBob using the technique 3D modelling, hierarchical modelling and 3D transformation.

The cartoon model is created with different shapes which are formed using some simple

primitive types such as lines to obtain the nose and mouth of the Sponge Bob; polygon and

3D primitives to draw the body, hands and legs of the Sponge Bob.

The basic transformations such as rotate, translate, and scale are implemented to

transform the coordinate position of the objects. The lighting and shading techniques are

implemented in this project. These techniques successfully make the output of the 3D model

become more realistic and attractive. The projection is applied in this project which enables

the user to see a different perspective of view by changing the angle of the camera (screen)

using the keyboard button (left,right,up,down) or using a mouse to scroll the screen. The

closing theme song of Spong Bob is also added into our project.

3

4. DISCUSSION

In this project, we have implemented some of the techniques and functions that learnt in the

previous lecture topics. We have improved the 3D object modelling, hierarchical modelling

and 3D transformation to create a 3D model of cartoon with the model created in

Assignment 3 by adding other features.

A. 3D MODELLING

For the 3D modelling in this project, we continue the model created in previous Assignment

3. The model created is a hierarchical model as it contains 1 main character (body part of

SpongeBob) and few sub characters (bottom, left hand, right hand, and legs. Some of the

sub parts are created using combinations of 3D primitives provided by GLUT such as

glutSolidSphere, glutSolidCube. While we are also drawing some of the sub parts with

GL_POLYGON which involve a sequence of vertices since we hope to obtain a more

attractive model with colour adjustment. The transformation is implemented using openGL

functions such as glRotatef and glTranslatef to perform rotation of angle degrees around the

vector x,y,z which is adjusted according to our output requirement.

B. LIGHTING AND SHADING

In this project,functions such as GL_AMBIENT for ambient colours. The ambient light

intensity is adjusted with the ambient surface color in the function. and GL_DIFFUSE for

diffuse colours, where diffuse light intensity is adjusted. GLfloat lightColor0 and

lightColor1 are the variables of GL_POSITION which are required to adjust the light

position. have been used in this lab exercise to control the lighting effects of the 3D object

created.

With the effect of lighting, the user is able to view different effects of the output displayed

when they press different input from the keyboard. The shading mode implemented in this

project is Flat Shading. The glShadeModel(GL_FLAT) function is used for shading effect

where flat shading selects the computed color as we entered in the function assigning to the

pixel fragments generated. The effect will be displayed if the lighting is enabled and the

4

colour back to original colour when disabled. The output displayed becomes more funny,

attractive and realistic with the implementation of lighting and shading.

C. PROJECTION AND CAMERA MODEL

For the projection, there are some variables that are required to be declared and needed for

the projection effect to be displayed. It includes the angle of the rotation in the y-axis which

allows the user to rotate the camera (angle), vector representing the camera position in X-Z

plane (lx,lz) and the position of the camera in X-Z plane (x,z). glLoadIdentity is used to

reset the transformations and the viewing transformation of the camera is defined using the

gluLookAt function. The interactivity implemented in this project enables the users to see a

different view of perspective according to the changes of camera angle when the users press

the left key or right ke from the keyboard. The new values of x and z is changing according

to the formula x = x + lx * fraction and z = z + lz * fraction where fraction is initialised as 0.

5

5. CONCLUSION

In conclusion, the purpose of this report is to explain how we use the OpenGL

function that we learned from the class session in order to produce a lifewell component

model and the attractive output scene. Throughout the project, we knew that all the function

of OpenGL can liked together in one coding such as using 3D object modelling, hierarchical

modelling and 3D transformation to create our main character, using lightning and shading

to switch our output for the lightning or non-lightning and lastly using projection and

camera model to setup and view the surrounding of our output. Besides, we need to apply

the keyboard function to manipulate our output movement such as moving up and down the

hand of our main character.

Throughout the process of completing this project, there are a few challenges we

have met. Since there are a lot of new functions that need to be applied for the coding part,

the output of the coding does not meet our expectations. It was a time-consuming task to

find the problems and errors of the coding and we had to find discussions about the solution

for the errors that occured, and we had to complete the project on time to avoid late

submission.

Last but not least, we would like to thank our lecturer , Dr. Goh Eg Su who provides

us with the material of the different functions of OpenGL that make us know which function

is suitable and how to implement this project.

6. VIDEO LINK

Click to view the output video

6

https://drive.google.com/file/d/18sL6-m8oqKCWB_R2Fdg_91dSawNVA7zh/view?usp=sharing

7. Appendix (Code)

#include <GL/glut.h>

#include <stdlib.h>

#include <math.h>

#include <windows.h>

#include <stdio.h>

#include <stdarg.h>

#include <string.h>

#include <fstream>

static int lshoulderAngle = 0, lpalm = 0, rshoulderAngle = 0, rpalm = 0;

static int window;

float G_right_upper_leg = 0.0;

float G_left_upper_leg = 0.0;

float G_left_lower_leg = 0.0f;

float G_right_lower_leg = 0.0f;

float x = 0.0f,y=0.0f, z = 5.0f;

float angleX = 0.0f;

float angleY = 0.0f;

float lx = 0.0f,ly = 0.0f,lz = -1.0f;

7

float deltaAngleX = 0.0f;

float deltaAngleY = 0.0f;

int deltaMoveX = 0;

int deltaMoveY = 0;

int xOrigin = -1;

int yOrigin = -1;

int width = 1200;

int height = 700;

#define PI 3.14159265f;

void displayBody() {

glPushMatrix();

glRotatef(-20, 0.0, 1.0, 0.0);

//top

glBegin(GL_POLYGON);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(-0.5, 1.5, 0.5);

glVertex3f(0.5, 1.5, 0.5);

glVertex3f(0.5, 1.5, -0.5);

8

glVertex3f(-0.5, 1.5, -0.5);

glEnd();

// back

glBegin(GL_POLYGON);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(-0.5, 0.4, -0.5);

glVertex3f(-0.5, 1.5, -0.5);

glVertex3f(0.5, 1.5, -0.5);

glVertex3f(0.5, 0.4, -0.5);

glEnd();

// right

glBegin(GL_POLYGON);

glColor3f(0.9, 0.9, 0.0);

glVertex3f(0.5, 1.5, 0.5);

glVertex3f(0.5, 0.4, 0.5);

glVertex3f(0.5, 0.4, -0.5);

glVertex3f(0.5, 1.5, -0.5);

glEnd();

9

// left

glBegin(GL_POLYGON);

glColor3f(0.9, 0.9, 0.0);

glVertex3f(-0.5, 1.5, 0.5);

glVertex3f(-0.5, 0.4, 0.5);

glVertex3f(-0.5, 0.4, -0.5);

glVertex3f(-0.5, 1.5, -0.5);

glEnd();

// front

glBegin(GL_POLYGON);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(-0.5, 0.4, 0.5);

glVertex3f(-0.5, 1.5, 0.5);

glVertex3f(0.5, 1.5, 0.5);

glVertex3f(0.5, 0.4, 0.5);

glEnd();

}

void displayHand(GLdouble width, GLdouble height, GLdouble depth) {

glPushMatrix();

10

glScalef(width, height, depth);

glutSolidCube(1.0);

glPopMatrix();

}

void displayLeftHand() {

//lefthand

glPushMatrix();

glColor3f(1.0, 1.0, 0.0);

glTranslatef(-0.8, 0.8, 0.0);

glRotatef(20.0, 0.0, 0.0, 1.0);

glRotatef((GLfloat)lshoulderAngle, 0.0, 0.0, 1.0);

displayHand(0.6, 0.1, 0.1);

glTranslatef(-0.2, 0.0, 0.0);

glRotatef((GLfloat)lpalm, 0.0, 0.0, 1.0);

glTranslatef(-0.2, 0.0, 0.0);

glutSolidSphere(0.1, 50, 50);

glPopMatrix();

11

}

void displayRightHand() {

//rightHand

glColor3f(1.0, 1.0, 0.0);

glTranslatef(0.8, 0.8, 0.0);

glRotatef(-20.0, 0.0, 0.0, 1.0);

glRotatef((GLfloat)rshoulderAngle, 0.0, 0.0, 1.0);

displayHand(0.6, 0.1, 0.1);

glTranslatef(0.2, 0.0, 0.0);

glRotatef((GLfloat)rpalm, 0.0, 0.0, 1.0);

glTranslatef(0.2, 0.0, 0.0);

glutSolidSphere(0.1, 50, 50);

glPopMatrix();

}

void displayBottom() {

12

glPushMatrix();

glRotatef(-20, 0.0, 1.0, 0.0);

// back

glBegin(GL_POLYGON);

glColor3f(0.6, 0.4, 0.2);

glVertex3f(-0.5, -0.5 + 0.8, -0.5);

glVertex3f(-0.5, -1.1 + 0.8, -0.5);

glVertex3f(0.5, -1.1 + 0.8, -0.5);

glVertex3f(0.5, -0.5 + 0.8, -0.5);

glEnd();

//white back

glTranslatef(0.0, 0.0, -0.003);

glBegin(GL_POLYGON);

glColor3f(0.9, 0.9, 0.9);

glVertex3f(-0.5, -0.5 + 1, -0.5);

glVertex3f(-0.5, -0.7 + 1, -0.5);

glVertex3f(0.5, -0.7 + 1, -0.5);

glVertex3f(0.5, -0.5 + 1, -0.5);

13

glEnd();

// right

glBegin(GL_POLYGON);

glColor3f(0.5, 0.4, 0.2);

glVertex3f(0.5, -0.5 + 0.8, 0.5);

glVertex3f(0.5, -1.1 + 0.8, 0.5);

glVertex3f(0.5, -1.1 + 0.8, -0.5);

glVertex3f(0.5, -0.5 + 0.8, -0.5);

glEnd();

//white right

glTranslatef(0.005, 0.0, 0.0);

glBegin(GL_POLYGON);

glColor3f(0.9, 0.9, 0.9);

glVertex3f(0.5, -0.5 + 1, 0.5);

glVertex3f(0.5, -0.7 + 1, 0.5);

glVertex3f(0.5, -0.7 + 1, -0.5);

glVertex3f(0.5, -0.5 + 1, -0.5);

glEnd();

14

// left

glBegin(GL_POLYGON);

glColor3f(0.5, 0.4, 0.2);

glVertex3f(-0.5, -0.5 + 0.8, 0.5);

glVertex3f(-0.5, -1.1 + 0.8, 0.5);

glVertex3f(-0.5, -1.1 + 0.8, -0.5);

glVertex3f(-0.5, -0.5 + 0.8, -0.5);

glEnd();

//white left

glTranslatef(-0.005, 0.0, 0.0);

glBegin(GL_POLYGON);

glColor3f(0.9, 0.9, 0.9);

glVertex3f(-0.5, -0.5 + 1, 0.5);

glVertex3f(-0.5, -0.7 + 1, 0.5);

glVertex3f(-0.5, -0.7 + 1, -0.5);

glVertex3f(-0.5, -0.5 + 1, -0.5);

glEnd();

// front

glBegin(GL_POLYGON);

15

glColor3f(0.6, 0.4, 0.2);

glVertex3f(-0.5, -0.5 + 0.8, 0.5);

glVertex3f(-0.5, -1.1 + 0.8, 0.5);

glVertex3f(0.5, -1.1 + 0.8, 0.5);

glVertex3f(0.5, -0.5 + 0.8, 0.5);

glEnd();

//white front

glTranslatef(0.0, 0.0, 0.005);

glBegin(GL_POLYGON);

glColor3f(1.0, 1.0, 1.0);

glVertex3f(-0.5, -0.5 + 1, 0.5);

glVertex3f(-0.5, -0.7 + 1, 0.5);

glVertex3f(0.5, -0.7 + 1, 0.5);

glVertex3f(0.5, -0.5 + 1, 0.5);

glEnd();

//top

glBegin(GL_POLYGON);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(-0.5, -0.5 + 1, 0.5);

16

glVertex3f(0.5, -0.5 + 1, 0.5);

glVertex3f(0.5, -0.5 + 1, -0.5);

glVertex3f(-0.5, -0.5 + 1, -0.5);

glEnd();

glPopMatrix();

}

void displayFace() {

glPushMatrix();

//right eye

glRotatef(-20, 0.0, 1.0, 0.15);

glTranslatef(0.35, 1.1, 0.4);

glColor3f(1.0, 1.0, 1.0);

glutSolidSphere(0.15, 20, 20);

glTranslatef(0.07, -0.01, 0.11);

glColor3f(0.0, 0.4, 1.0);

glutSolidSphere(0.08, 20, 20);

17

glTranslatef(0.03, -0.005, 0.06);

glColor3f(0.0, 0.0, 0.0);

glutSolidSphere(0.03, 20, 20);

//left eye

glRotatef(-20, 0.0, 1.0, 0.0);

glTranslatef(-0.5, 0.0, 0.15);

glColor3f(1.0, 1.0, 1.0);

glutSolidSphere(0.15, 20, 20);

glTranslatef(0.1, -0.01, 0.07);

glColor3f(0.0, 0.4, 1.0);

glutSolidSphere(0.08, 20, 20);

glTranslatef(0.07, -0.01, 0.03);

glColor3f(0.0, 0.0, 0.0);

glutSolidSphere(0.03, 20, 20);

glRotatef(40, 0.0, 1.0, 0.0);

glTranslatef(0.1, -0.2, -0.17); //nose

18

glBegin(GL_LINE_STRIP);

glColor3f(0.0, 0.0, 0.0);

GLfloat angle;

for (int i = 0; i <= 200; i++) {

angle = i * PI;

angle = angle / 200;

glVertex2f(cos(angle) * 0.3, sin(-angle) * 0.15);

}

glEnd();

glBegin(GL_LINE_STRIP); //mouth

glColor3f(0.0, 0.0, 0.0);

GLfloat Angle;

for (int i = 0; i <= 200; i++) {

Angle = i * PI;

Angle = Angle / 200;

glVertex2f(cos(Angle) * 0.08, sin(Angle) * 0.08);

}

glEnd();

19

glBegin(GL_POLYGON); //tooth

glColor3f(1.0, 1.0, 1.0);

glVertex3f(-0.1, -0.16, 0.0);

glVertex3f(-0.1, -0.25, 0.0);

glVertex3f(0.1, -0.25, 0.0);

glVertex3f(0.1, -0.16, 0.0);

glEnd();

glPopMatrix();

}

void displayleg()

{

glTranslatef(0.0, 0.9, 0.0);

glRotatef(-20, 0.0, 1.0, 0.0);

glPushMatrix();

//right leg

glColor3f(1.0, 1.0, 0.0);

glTranslatef(0.3, -1.0, 0.0);

glRotatef(G_left_upper_leg, 1.0, 0.0, 0.0);

20

glTranslatef(0.0, -0.36, 0.0);

glPushMatrix();

glScalef(0.20, 0.95, 0.3);

glutSolidCube(1.0);

glPopMatrix();

//right shoe

glColor3f(0.0f, 0.0f, 0.0f);

glTranslatef(0.0, -0.55, 0.0);

glutSolidSphere(0.13, 20, 20);

glPopMatrix();

//left leg

glPushMatrix();

glColor3f(1.0, 1.0, 0.0);

glTranslatef(-0.30, -1.03, 0.0);

glRotatef(G_right_upper_leg, 1.0, 0.0, 0.0);

glTranslatef(0.0, -0.3, 0.0);

glPushMatrix();

glScalef(0.20, 0.95, 0.3);

glutSolidCube(1.0);

21

glPopMatrix();

//left shoe

glColor3f(0.0f, 0.0f, 0.0f);

glTranslatef(0.0, -0.55, 0.0);

glutSolidSphere(0.13, 20, 20);

glPopMatrix();

glutSwapBuffers();

}

void drawBubble() {

glColor3f(0.8, 0.8, 1.0);

glutSolidSphere(0.5,20,20);

}

void displayGround() {

glBegin(GL_QUADS);

glColor3f(0.8, 0.8, 0.5);

22

glVertex3f(-100.0f, -20.0f, -100.0f);

glVertex3f(-100.0f, -20.0f, 100.0f);

glVertex3f(100.0f, -20.0f, 100.0f);

glVertex3f(100.0f, -20.0f, -100.0f);

glEnd();

for (int i = -1; i < 3; i++)

for (int j = -5; j < 3; j++) {

glPushMatrix();

glTranslatef(i * 20.0, i + 1, j * 10.0);

drawBubble();

glPopMatrix();

}

}

void keyboard(unsigned char key, int x, int y)

{

float fraction=0.1f;

switch (key) {

case 'a':

23

(lpalm += 30) %= 360;

glutPostRedisplay();

break;

case 'd':

(lpalm -= 30) %= 360;

glutPostRedisplay();

break;

case 'w':

(lshoulderAngle -= 15) %= 30;

glutPostRedisplay();

break;

case 'A':

(rpalm += 30) %= 360;

glutPostRedisplay();

break;

case 'D':

(rpalm -= 30) %= 360;

glutPostRedisplay();

break;

case 'W':

(rshoulderAngle += 15) %= 30;

24

glutPostRedisplay();

break;

case 'o':

case 'O':

PlaySoundA("C:\\zmisc\\Spongebob.wav", NULL, SND_ASYNC);

break;

case 'n':

case 'N':PlaySound(NULL, 0, 0);

break;

case 'l':glEnable(GL_LIGHTING);

break;

case 'm':glDisable(GL_LIGHTING);

break;

case 27:

exit(0);

break;

default:

break;

}

25

}

void changeSize(int w, int h)

{

if (h == 0)

h = 1;

float ratio = w * 1.0 / h;

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glViewport(0, 0, w, h);

gluPerspective(45.0f, ratio, 0.1, 100.0f);

glMatrixMode(GL_MODELVIEW);

}

void processNormalKeys(unsigned char key, int x, int y) {

if (key == 27)

26

exit(0);

}

void processSpecialKeys(int key, int xx, int yy)

{

float fraction = 0.5f;

float fractiony = 2.0f;

switch (key) {

case GLUT_KEY_UP:x += lx * fraction;

z += lz * fraction;

break;

case GLUT_KEY_DOWN:x -= lx * fraction;

z -= lz * fraction;

break;

case GLUT_KEY_LEFT:y += ly * fractiony;

27

break;

case GLUT_KEY_RIGHT:y -= ly * fractiony;

break;

}

}

void releaseKey(int key, int x, int y) {

switch (key) {

case GLUT_KEY_UP:

case GLUT_KEY_DOWN: deltaMoveX = 0;deltaMoveY = 0;

break;

}

}

void mouseMove(int x, int y) {

if (xOrigin >= 0) {

deltaAngleX = (x - xOrigin) * 0.001f;

lx = sin(angleX + deltaAngleX);

28

lz = -cos(angleX + deltaAngleX);

}

if (yOrigin >= 0) {

deltaAngleY = (y - yOrigin) * 0.001f;

ly = sin(angleY + deltaAngleY);

}

}

void mouseButton(int button, int state, int x, int y) {

if (button == GLUT_LEFT_BUTTON) {

if (state == GLUT_UP)

{

angleX += deltaAngleX;

angleY += deltaAngleY;

yOrigin = 0;

xOrigin = -1;

}

else

{

xOrigin = x;

29

yOrigin = y;

}

}

}

void init(void)

{

glClearColor(0.1, 0.6, 0.8, 0.0);

glMatrixMode(GLUT_SINGLE | GLUT_RGB);

glLoadIdentity();

glOrtho(0, width, 0, height, 0.0, 1.0);

glShadeModel(GL_FLAT);

glEnable(GL_DEPTH_TEST);

glEnable(GL_COLOR_MATERIAL);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_LIGHT1);

glEnable(GL_NORMALIZE);

}

30

void renderScene(void) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

gluLookAt(x, y, z,

x + lx, y+ly, z + lz,

0.0f, 0.3f, 0.0f);

displayGround();

displayBody();

displayFace();

displayRightHand();

displayLeftHand();

displayBottom();

displayleg();

GLfloat ambientColor[] = { 0.2f,0.2f,0.2f,1.0f };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientColor);

31

GLfloat lightColor0[] = { 0.5f,0.5f,0.5f,1.0f };

GLfloat lightPos0[] = { 4.0f,0.0f,8.0f,1.0f };

glLightfv(GL_LIGHT0, GL_DIFFUSE, lightColor0);

glLightfv(GL_LIGHT0, GL_POSITION, lightPos0);

GLfloat lightColor1[] = { 0.5f,0.2f,0.2f,1.0f };

GLfloat lightPos1[] = { -1.0f,0.5f,0.5f,0.0f };

glLightfv(GL_LIGHT1, GL_DIFFUSE, lightColor1);

glLightfv(GL_LIGHT1, GL_POSITION, lightPos1);

}

int main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_SINGLE |

GLUT_RGBA);

glutInitWindowSize(width,height);

glutInitWindowPosition(100, 0);

window = glutCreateWindow("Spongebob");

32

init();

glutDisplayFunc(renderScene);

glutReshapeFunc(changeSize);

glutIdleFunc(renderScene);

glutIgnoreKeyRepeat(1);

glutKeyboardFunc(processNormalKeys);

glutSpecialFunc(processSpecialKeys);

glutSpecialUpFunc(releaseKey);

glutKeyboardFunc(keyboard);

glutMouseFunc(mouseButton);

glutMotionFunc(mouseMove);

glEnable(GL_DEPTH_TEST);

glutMainLoop();

return 0;

}

33

