UNIVERSITI TEKNOLOGI MALAYSIA

Assighment 2

Fundamental of Computer Graphics — SCSV 221

Name : Muhammad Amirul Fahmi bin Noor Anim
Matrics Num : B19EC0018
Sec Num : SCSV 2213(Sec 01)

TABLE OF CONTENTS

1. Acknowledgement

2. Introduction

3. Structure of the coding

4. New function learn in OpenGL

5. Conclusion

6. Coding

7. References

1. ACKNOWLEDGEMENT

| would like to thank my Fundamental Computer Graphics lecturer, Dr. Norhaida binti
Mohd Suaib, for guiding us to finish our assignment in time. | would also like to thank my
fellow colleagues who suggesting me many great ideas on starting this assignment. | would
also like to thank to the youtuber and blogger who give me much information about OpenGL
which helps me finish this assignment faster. Finally, | would also like to thank to the people
who were participated in helping me finishing my assignment directly or indirectly.

2. INTRODUCTION

This task is given by our Fundamental of Computer Graphics lecturer, Dr. Norhaida bt
Mohd Suaib, as a second assignment for us. In this short report, we will discuss on producing
a mini ‘Paint’ software in Windows by using OpenGL. However, we do not have to make a
complicated function in the software such as ‘Fill’ or more advanced functions. We are
required to make ‘Paint’ software program that could at least generate certain output
primitives. The program should generate a line based on user input by using DDA or
Bresenham line algorithm. This program also should generate a circle based on Midpoint
Circle algorithm and an ellipse based on Midpoint Ellipse algorithm. Student also can add extra
function to the coding such as size or colour.

The objective of this assignment is to study available software/tool that can generate

various output primitives. This assignment also makes us develop our own mini software that
can generate basic output primitives such as line, circle and ellipse extended by the algorithms
taught during lectures. This assignment also makes us prepare a suitable documentation and
report.

3. STRUCTURE OF CODING

When running the program, the screen will be displayed with white colour. User are
required to open a menu to use the function on the program. A sentence is displayed to guide
user how to open the menu. The coding has a menu and submenu function, that is

glutCreateMenu(). This function is used to make an option for the user to run the function

according to user needs.

There are three menus in the program. The first one is ‘Clear’ that has a function to
clear the buffer of the screen. The second menu is ‘Draw’ that has a function to draw shapes
according to user need. The third one is ‘Quit’ that has a function to exit the program. The
second menu has three submenu that is ‘DDA Line algorithm’, ‘Midpoint Circle algorithm’ and
‘Midpoint Ellipse Algorithm’. The function of these submenus is to create a shape according
to user need that is a line, circle or an ellipse.

To create a shape, the user needs to give input coordinates to the program.
glutMousefunc() is used in this program to record the input given by user. There are three
mouse functions in this program. Each function is implemented on each submenu with
various number of inputs been recorded to the program. When the user put the required
number of inputs to the program. A shape will be created based on user option.

4. NEW FUNCTION LEARNT IN OPENGL

glScissor()

This function is used to create a function that only happens in a rectangle-sized box provided
by user. We used this function to change the instruction for the user based on the algorithm
that the user want to draw.

glutCreateMenu()

This function is used for creating a menu or submenu in a program. We used this function to
provide multiple options for the user to use the program.

5. CONCLUSION

There are many new things that | have learnt during finishing this assignment. | learn
some new functions that | searched on the Internet. This makes me more aware that OpenGl
has some helpful tricks to make a successful program. | also learn more on how to make an
OpenGL program. This ease my work during making project and assignment on this course

subject. Plus, this assighment makes me more interested on creating OpenGL program and

maybe one day, OpenGL will be the source of my income in the future.

6. CODING

//MUHAMMAD AMIRUL FAHMI BIN NOOR ANIM
//B19EC0018

#include <windows.h>
#include <iostream>
#include <fstream>
#include <math.h>
#include <GL/glut.h>

float xstart, ystart, xend, yend; // for dda line algorithm

int xcenter, ycenter, radius; //for midpoint circle algorithm
int xCenter, yCenter, xradius, yradius; //for midpoint ellipse
algorithm

static int pt = 0;

static char algorithm;

static int window;

static int menu id;

static int submenu_ id;

static int wvalue = 0;

float distance (int xi, int yi, int xj, int yj) { // to calculate the
distance between the first coordinate and second coordinate
return sqgrt(pow(xj - xi,2) + pow(yj - yi,2));

void setPixel (float x, float vy) {
glColor3f(1.0f, 0.0f, 0.0f); //Color of the line
glPointSize (2); //Size of the line
glBegin (GL POINTS) ; //Start drawing point primitive
glVertex2f(x, y);
glEnd();

void 1ineDDA (float x0, float y0, float xEnd, float yEnd) / /DDA Line
algorithm

{
float dx = xEnd - x0, dy = yEnd - y0, steps, k;

float xIncrement, yIncrement, x = x0, y = y0;
if (fabs(dx) > fabs(dy))

steps = fabs (dx);
else

steps = fabs (dy);
xIncrement = float(dx) / float (steps);
yIncrement = float(dy) / float(steps);
setPixel (round(x), round(y)):
for (k = 0; k < steps; k++) {

x += xIncrement;

y += yIncrement;

setPixel (round(x), round(y)):

void circleMidPoint (int xCenter, int yCenter, int radius) //Circle
midpoint algorithm
{
int x = 0;
int y radius;
int p = 1 - radius;//5/4 is rounded to 1 for integer radius
while (x < y) {// iterates to draw the first sector
X++;
if (p < 0)// the mid point is inside the circle
pt=2 * x + 1;
else {// the mid point is outside or at the circle
y——7
p+t=2* (x —y) +1;
}
glBegin (GL POINTS) ;
glVertex2i (xCenter yCenter
glVertex2i (xCenter yCenter
glVertex2i (xCenter yCenter

glVertex2i (xCenter yCenter
glVertex2i (xCenter yCenter
glVertex2i (xCenter yCenter

(
(
(
glVertex2i (xCenter yCenter
(
(
(
(

glVertex2i (xCenter yCenter
glEnd () ;
}
// OPTIONAL:-> center of the circle
glBegin (GL POINTS) ;
glVertex2i (xCenter, yCenter);
glEnd();

void ellipsePlotPoints (int xCenter, i yCenter, int x, int y)

{

setPixel (xCenter yCenter

setPixel (

setPixel (xCenter yCenter
(

xCenter yCenter

xCenter yCenter

setPixel

void ellipseMidpoint (int xCenter, int yCenter, int Rx, // midpoint
ellipse algorithm
{

int Rx2 = Rx

int Ry2 = Ry

int twoRx2 =

int twoRy2 =

int p;

int x = 0;

int y Ry;

int px = 0;

int py twoRx2 * y;

/* Plot the initial point in each quadrant. */
ellipsePlotPoints (xCenter, yCenter, x, Vy);
/* Region 1 */
p = round(Ry2 - (Rx2 * Ry) + (0.25 * Rx2));
while (px < py) {
xX++;
px += twoRy2;
if (p < 0)
p += Ry2 + px;
else {
Yy==7
= twoRx2;
p += Ry2 + px - py;
}
ellipsePlotPoints (xCenter, yCenter, x,
}
/* Region 2 */
p = round(Ry2 * (x + 0.5) * (x
Ry2);
while (y > 0) {
Naai
py —-= twoRx2;
if (p > 0)
p += Rx2 - py;
else {
xX++;
px += twoRy2;
p t= Rx2 - py + px;
}

ellipsePlotPoints (xCenter, yCenter, x,

void mouse3 (int button, int state, int mousex, int mousey)
input for midpoint ellipse algorithm

{

if (button == GLUT_ LEFT BUTTON && state == GLUT DOWN)

if (pt == 0) { //to make sure if there is

existing point or not

xCenter mousex; //make the first x-coordinate

the starting point
yCenter 480 - mousey;
the starting point
pt++;
setPixel (xCenter, yCenter);
}
else if (pt == 1) {
int x1 = mousex;
coordinate and y-coordinate as the x-radius
int x2 = 480 - mousey;
pt++;
xradius = int (distance (xCenter, yCenter,
the distance to change to radius x
}
else {
int x11 = mousex;
//set x-coordinate and y-coordinate as the y-radius
int x22 480 - mousey;
yradius int (distance (xCenter, yCenter,
//calculate the distance to change to radius y

ellipseMidpoint (xCenter, yCenter, xradius,

//initiate dda line algorithm
}
}
else if (button == GLUT_ RIGHT BUTTON && state ==
GLUT DOWN) //undo (clear) the drawing
{
glClearColor (1, 1, 1, 0);
glClear (GL COLOR BUFFER BIT) ;
while (pt > 0) {
pt--;

x1,

x11,

x2));

x22));

yradius) ;

void mouse2 (int button, int state, int mousex, int mousey)

input for midpoint circle algorithm

{

if (button == GLUT LEFT BUTTON && state == GLUT DOWN)
{

//make the first y-coordinate

//calculate

if (pt == 0) { //to make sure if there is

existing point or not

xcenter mousex;

ycenter 480 - mousey;
pt++;

setPixel (xcenter, ycenter);

int x1 = mousex;
coordinate as the radius
int x2 = 480 - mousey;
radius = int (distance (xcenter, ycenter, x1, x2));
circleMidPoint (xcenter, ycenter, radius); //initiate circle
midpoint algorithm

else if (button == GLUT RIGHT BUTTON && state ==
GLUT_DOWN) //undo (clear) the drawing

{
glClearColor(l, 1, 1, 0);
glClear (GL_COLOR_BUFFER BIT);

while (pt > 0) {
pt--;

glutPostRedisplay() ;

void mouse (int button, int state, int mousex, int mousey)
input for dda line algorithm

{

if (button == GLUT LEFT BUTTON && state == GLUT DOWN)

if (pt == 0) { //to make sure if there 1is
existing point or not
xstart = mousex; //make the first x-coordinate
the starting point
ystart = 480 - mousey; //make the first y-coordinate
the starting point
pt++;
setPixel (xstart, ystart);
}
else {
xend = mousex; //make the first x-
coordinate the end point
yend = 480 - mousey; //make the first y-
coordinate the end point
lineDDA (xstart, ystart, xend, yend); //initiate dda line
algorithm
}
}
else if (button == GLUT_ RIGHT BUTTON && state ==
GLUT DOWN) //undo (clear)the drawing
{
glClearColor (1, 1, 1, 0);
glClear (GL_COLOR_BUFFER BIT);
while (pt > 0) {

void renderbitmap (float x, float y, void* font, char* string) {
rendering the word from the parameter
char* c;
glRasterPos2f (x, Vy);
for (¢ = string; *c != '\0'; c++) {
glutBitmapCharacter (font, *c);

void introscreen () { // display instruction for user to
open menu
glColor3f(0.£f, 0.£, 0.f);
char buf[100] = { 0 };
sprintf s(buf, "Press middle button mouse to open the menu");
renderbitmap (5, 470, GLUT BITMAP 8 BY 13, buf);

void instructionscreen () { // display instruction for user to
create shape

glColor3f(0.£f, 0.£, 0.f);

char buf[100] = { 0 };

if (value == 2) {

sprintf s(buf, "Click the coordinate of first point then second

point.");
renderbitmap (5, 455, GLUT BITMAP 8 BY 13, buf);
}
else 1if (value == 3) {
sprintf s(buf, "Click the coordinate of center point then the
radius.");
renderbitmap (5, 455, GLUT BITMAP 8 BY 13, buf);
}
else 1f (value == 4) {
sprintf s(buf, "Click the coordinate of center point, radius of x
then radius of y.");
renderbitmap (5, 455, GLUT BITMAP 8 BY 13, buf);

void menu (int num) { // To close the program if the user
click 'Quit' button
if (num == 0) {
glutDestroyWindow (window) ;
exit (0);
}
else {
value = num;
}
glutPostRedisplay () ;

void createMenu (void) {
submenu id = glutCreateMenu (menu) ;
submenu for draw

glutAddMenuEntry ("DDA Line Algorithm",

creating

2);

glutAddMenuEntry ("Midpoint Circle Algorithm", 3);
glutAddMenuEntry ("Midpoint Ellipse Algorithm", 4);
menu id = glutCreateMenu (menu) ;

menu for the program
glutAddMenuEntry ("Clear", 1);
glutAddSubMenu ("Draw", submenu id);
the submenu into 'Draw' menu
glutAddMenuEntry ("Quit", 0);
glutAttachMenu (GLUT MIDDLE BUTTON) ;
press middle button to display menu

}

void display(void) {

glMatrixMode (GL_PROJECTION) ;
projection

glLoadIdentity ()
by identity matrix

gluOrtho2D (0.0, 640.0, 0.0, 480.0);
parallel (orthographic) projection of the

introscreen () ;
if (value == 1) {

glClearColor (1.0, 1.0, 1.0, 1.0);

screen
glClear (GL_COLOR BUFFER BIT);
introscreen|() ;
}
else if (value == 2) {
introscreen () ;
glEnable (GL SCISSOR TEST) ;
places only
glScissor (5, 453, 580, 12);

glClearColor (1.0, 1.0, 1.0, 1.0);

glClear (GL COLOR BUFFER BIT);
glDisable (GL _SCISSOR TEST) ;
instructionscreen () ;
glutMouseFunc (mouse) ;
}
else if (value == 3) {
introscreen() ;
glEnable (GL SCISSOR_TEST) ;
places only
glScissor (5, 453, 580, 12);
of the box

glClearColor (1.0, 1.0, 1.0, 1.0);

the buffers cleared
glClear (GL_COLOR BUFFER BIT);

creating

implementing

user will

// sets the current matrix to
//multiply the current matrix

//sets the

full frame buffer

// to clear buffer of the

//to clear buffer of certain

//to clear buffer of certain

// the coordinate and the size

// the color of the box when

glDisable (GL SCISSOR TEST) ;
instructionscreen () ;
glutMouseFunc (mouse?) ;

}

else if (value == 4) {
introscreen () ;
glEnable (GL SCISSOR TEST) ; //to clear buffer of certain

places only

glScissor (5, 453, 580, 12);
glClearColor (1.0, 1.0, 1.0, 1.0);
glClear (GL COLOR BUFFER BIT);
glDisable (GL SCISSOR TEST) ;
instructionscreen () ;
glutMouseFunc (mouse3) ;

}

glFlush{() ;

main (int argc, char** argv) {

//M Amirul Fahmi

glutInit (&argc, argv);

glutInitDisplayMode (GLUT RGBA | GLUT_ SINGLE) ;

glutInitWindowSize (640, 480);

glutInitWindowPosition (100, 100);

window = glutCreateWindow ("Menus and Submenus - Programming
Techniques") ;

createMenu () ;

glClearColor(l, 1, 1, 0); // sets the background color to white light
glClear (GL _COLOR BUFFER BIT); // clears the frame buffer and set values
defined in glClearColor () function call

glutDisplayFunc (display) ;
glutMainLoop () ;

7. REFERENCES

1. Programming Techniques (2012), ‘GLUT Tutorial — Creating Menus and Submenus in
GLUT’, Reviewed by: https://www.programming-techniques.com/2012/05/glut-
tutorial-creating-menus-and-submenus-in-glut.html

2. SH Academy (2017), ‘OpenGL mouse function example for beginners to draw an image
with mouse’, Reviewed by: https://youtu.be/79Zy-ATRWGE

https://www.programming-techniques.com/2012/05/glut-

