

School of Computing

Faculty of Engineering

UNIVERSITI TEKNOLOGI MALAYSIA

DATA STRUCTURE & ALGORITHM

(SECJ2013)

SEMESTER 1 2020/2021

Mini PROJECT Documentation

SPORT CENTRE REGISTRATION SYSTEM

By

Arif Amiruddin bin Sadiran (000503-10-1007) Leader

Muhammad ‘Afif Azhan bin Mohd Ismail (000809-05-0265)

Muhammad Iskandar Zulqarnain bin Mohd Ishak (001108-01-0679)

SECTION 03

Lecturer

Ms. Lizawati binti Mi Yusuf

Date

30 January 2021

1

Table of Content

PART 1: INTRODUCTION

1.1 Synopsis Project……………………………………….……………………………….....2

1.2 Objective of The Project……………………….………………………………………...3

PART 2: SYSTEM ANALYSIS AND DESIGN (USE CASE, FLOWCHART AND
CLASS DIAGRAM)

2.1 System Requirements………………………………………………….………………3-4

2.2.1 Flowchart 0: Overall System Overview………………………………....……………5

2.2.2 Flowchart 1: Data Display…………………………………………………………..…5

2.2.3 Flowchart 2: Data Insertion…………………………………………………………...6

2.2.4 Flowchart 3: Data Sorting……………………………………………………………..6

2.2.5 Flowchart 4: Data Searching…………………………………………………………..7

2.2.6 Flowchart 5: Data Deletion…………………………………………………………….7

2.2.7 Flowchart 6: Daily Equipment Rental………………………………………………..8

PART 3: SYSTEM PROTOTYPE
3.1 Main Menu………………………………………………………………………………..9
3.2 Module 1 - Data Display………..………………………………………………………10
3.3 Module 2 - Data Insertion…………………………………………………………..11-12
3.4 Module 3 - Data Sorting………………………………………………………….…13-14
3.5 Module 4 - Data Searching………………………………………………………….15-18
3.6 Module 5 - Data Deletion………………………………………………………...….19-20
3.7 Module 6 - Daily Equipment Rental………………………………………………..21-22

PART 4: DEVELOPMENT ACTIVITIES

4.1 Meeting Minutes……………………………………………………………………..23-24

PART 5: APPENDIX
5. 1 Source Code…………………………………………………………………………25-49

1

PART 1: INTRODUCTION

1.1 Synopsis Project

For our final project of SECJ2013 for this semester, we are required to make a

program that works like a sport centre system. We are required to apply data structures that

we had learnt in our class like linked list, queue, stack and tree.

For this project, we had applied two types of data structure which are, linked list and

queue. We used the linked list to create a list of customers that had attended the sport centre,

while queue is used to generate a queue of equipment that can be rented to the customers. For

our queue, we had used two queues where one for the available equipment for rent, and the

second one for rented equipment of the day. We used queues instead of stacks because, if not

all equipment is rented on the specific day, the system will insert yesterday's rented

equipment into the available equipment queue.

So, if a customer wants to rent an equipment, they will only be able to rent the

equipment that has not been rented since yesterday. This allows all equipment to be used and

not stored in the storage forever.

Our system has six functions or algorithms. First, it can display the lists of customers

that had attended the sport centre in the past. Other than that, it allows the user of the system

to insert a customer's details into the back, front or in the middle of the list.

The third function is sorting the list according to the customers’ name, IC and age.

The system can sort the list in either ascending or descending order using the insertion sort

method. Not only that, the system also allows data searching to search for the details of a

certain customer in the list. The user can choose to search by name, by ICs or by month of

attendance. If the inserted detail matches, it will display the details of the customer(s).The

fifth one is data deletion function. This allows the user to delete a chosen customer from the

list. Users only need to enter a number based on the displayed list to delete the respective

customer.

Lastly, the last function is the daily equipment rental. This allows customers to rent

equipment from the sports centre for the specific day. If there are any equipment that are

available for rent, the customer can insert their details and a receipt will be generated. Users

need to show the receipt to the rent counter to retrieve their item. Users can also check the list

of rented items in the past. This algorithm applies the queue data structure where the

equipment list will be in a queue. This allows the equipment to be in First In First Out

movement, to allow all available equipment to be rented before starting a new rent cycle

2

1.2 Objective of The Project

The objectives of the project are :-

● To develop deeper understanding on the DSA subject.

● Gives ideas on how to implement DSA concepts in a real life situation.

● Develop team working and soft skills among team members.

● To develop a sport center system with insert, delete, display, sort, search and rent

equipment.

PART 2: SYSTEM ANALYSIS AND DESIGN (USE CASE, FLOWCHART AND
CLASS DIAGRAM)

In this section, we identified the requirements and the design of the system. We also provide
the use case diagram, flowchart and class diagram for every module in our sports centre
system.

2.1 System Requirements

Use Case Diagram

Example:

Figure 1: Use Case Diagram for Sports Centre Registration System

3

Use Case Description for Sports Centre Registration System

The system users are admin and customer.

Detail Description for Each Use Cases

The system has 6 main use cases.

4

Actor Task
Admin Admin will perform all functions in the system. The functions include

displaying data of current customers, inserting new data for customers who
want to book the sports centre, sorting data within certain criteria,
searching data within certain criteria, deleting data of customers who
already finish using the sports facilities and performing daily equipment
rental process for customers who want to rent sports equipment.

Customer Customers may access to look at available equipment including futsal ball

and racket. The customer could also check the rental record and the
equipment’s status wherever it is still available or not.

Use Case Task
Data Display Display current customer list in the system that already

registered to use the sport centre (list of customers already
assigned in the program’s codes)

Data Insertion Insert new customers’ details to the sports centre registration
system who wants to book the facilities. Admin may have
several choices to input customers’ details via front, middle or
at the end of the list.

Data Sorting Sort customers’ details through demanded criteria such as
name, identification card number and age.

Data Searching Search customers’ data through demanded criteria such as
name, identification card number and month of booking.

Data Deletion Delete the customers’ data when their session ended after using
the sport centre facilities.

Daily Equipment Rental Provide daily equipment rent system to allow customers to rent
some sports equipment such as futsal ball, racquet and
swimsuit. This function also allows the admin to display the list
of rented equipment.

2.2 System Design

Algorithm: Flowchart for each module.

Flowchart 0: Overall System Overview
Prepared By;.Iskandar Zulqarnain Mohd Ishak

Flowchart 1: Data Display
Prepared By;.Iskandar Zulqarnain Mohd Ishak

5

Flowchart 2: Data Insertion
Prepared By; Iskandar Zulqarnain Mohd Ishak

Flowchart 3: Data Sorting
Prepared By; Arif Amiruddin bin Sadiran

6

Flowchart 4: Data Searching
Prepared By; Arif Amiruddin bin Sadiran

Flowchart 5: Data Deletion
Prepared By; Arif Amiruddin bin Sadiran

7

Flowchart 6: Daily Equipment Rental
Prepared By; ‘Afif Azhan Mohd Ismail

8

PART 3: SYSTEM PROTOTYPE

Main Menu

This screen shows the main menu of the system. Users must enter an integer between

1-6 to enter a specific module. To exit the program, the user needs to enter ‘0’. If the user

enters an integer other than 0-6, the program will display an error message and the screen will

be displayed again. Then, users are allowed to enter their input again.

This menu will be displayed if the user chose to exit the program.

Explanation Prepared By: ‘Afif Azhan Mohd Ismail

Code Prepared By: Iskandar Zulqarnain Mohd Ishak

9

Module 1 - Data Display

Screen 2: Book Searching System

This screen shows the list of customers in the system record. The list is shown below

the main menu if the user inserted ‘1’ in the main menu option. If there are no customers in

the record, nothing will be displayed except the system telling you that the list is empty. To

return to the main menu, the user needs to click any key on the keyboard.

Explanation Prepared By: ‘Afif Azhan Mohd Ismail

Code Prepared By: Iskandar Zulqarnain Mohd Ishak

10

Module 2 - Data Insertion

This screen shows the data insertion function in our program. The user can choose

either to insert a new customer record into the either front, middle or the end of the list by

entering an integer between 1-3. If the user inserted 0, they will be directed back to the main

menu. If they inserted other than that, the program will prompt an error message and the

screen will be displayed again.

11

This screen shows the invalid option message whenever the user inserted a wrong input.

The next screen shows the output when the user chose to insert new data into the list.

The program will ask the user to insert the details of the customer which are the name, age,

identification ID, the sport that they are playing, the date of attendance, the check in time and

the check out time. This output is the same for every 1-3 choices.

After the user inserted the details of the new customer into the list, the program will

display the new list after the insertion process. Based on the first figure of this module, the

user chose to enter the new data at the front of the list. So, we can say here that the customer

“Ahmad Ali” has been added at the front of the list. After that, user will be directed to the

main menu.

Explanation Prepared By: ‘Afif Azhan Mohd Ismail

Code Prepared By: Iskandar Zulqarnain Mohd Ishak

12

Module 3 - Data Sorting

This screen shows the first menu of the data sorting function for the program. The

user needs to choose either to sort the list either by name, identification number or by their

age by entering integer between 1-3. To return to the main menu, the user needs to insert the

integer 0. Inserting an integer other than 0-3 will produce an invalid option message. The

screen will be displayed again so the user can choose a new option.

Once the user inserted his option, they would need to choose either to sort the list in

ascending or descending order. This choice will be displayed the same for the sort by IC and

age function. If the user inserted an integer that is not in the 0-2 range, invalid input message

will be displayed and the user will be directed back to the sorting function main menu.

13

If the sorting process is successful. The program will display the new list after sorting

depending on the user’s choice. For this example, the user chose to sort the list in ascending

order based on the customer’s name. We can see that the number 1 in the list started with ‘A’

followed by ‘F’ in the second one. After displaying the new list, the program will display the

main menu of the sorting function.

Explanation Prepared By: ‘Afif Azhan Mohd Ismail

Code Prepared By: Arif Amiruddin bin Sadiran and Iskandar Zulqarnain Mohd Ishak

14

Module 4 - Data Searching

This screen shows the main menu of the searching function where users need to enter

an integer between 0 - 3. To use the searching function either based on search by name, by

identification number or by month of attendance, they need to enter 1, 2, and 3 respectively.

To return to the main menu, the user will need to enter 0. If the user entered an integer other

than that, the program will prompt an error message and the screen will be displayed again.

Based on the figure above, we can see that the program displayed an error message if

the user inserted 4, because the valid integer is in the range of 0-3.

15

For this screen, the user had chosen to search a customer by their name. He needs to

enter the full name of the customer and the program will display the customer’s details.

The figure above shows the display whenever the name that the user entered does not

match with any of the customers in the list. By clicking any key on the keyboard, the user

will be redirected to the searching function main menu.

16

Other than that, the figure above shows the display when the user wanted to search a

customer’s details by using their IC. The program will display the same as the search by

name function.

This screen shows the result when the inserted IC does not match any of the

customer’s IC in the list. The user will be directed back to the searching function main menu.

17

For the 3rd option of the searching function, the user needs to choose the month’s

customers. Like the example above, the user wanted to see the details of the customers that

had attended the sport centre in July. The program will display a list of customers instead of a

single person. This is because it is impossible for a customer to have the same IC number

plus it is rare for two or more customers to have the same name.

Explanation Prepared By: ‘Afif Azhan Mohd Ismail

Code Prepared By: Arif Amiruddin bin Sadiran

18

Module 5 - Data Deletion

The screen above shows the data deletion function menu, where the user is able to

choose to delete a customer details from the list. The user only needs to enter an integer that

matches the customer number on the left of the list, then the customer will be deleted.

If the user entered a non-existent integer, the program will prompt an error message

and the screen will be displayed again. To return to the main menu, the user needed to enter 0

in the option input.

19

When the user enters a valid integer, the program will ask for the user’s confirmation

to either delete the details of the chosen customer or not. If he agreed, then the program will

display the new list afterwards. Otherwise, the main menu of the deletion function will be

displayed. After deletion, the deletion function main menu will be displayed again.

Explanation Prepared By: ‘Afif Azhan Mohd Ismail

Code Prepared By: ‘Afif Azhan Mohd Ismail

20

Module 6 - Daily Equipment Rental

For module 6, the figure above shows the main screen of the equipment rental

function. The customers are only allowed to see the rent function while the admins can see

the 3rd option. The title of the function shows the rent function for 29th January which is the

date when the program is run. That means every day has a different rent function. To rent an

equipment, users can choose either 1 or 2 depending on the availability of the equipment. If

the user wants to see the rental record, user insert integer 3 in the option. To return to the

main menu, the user needs to enter integer 0. At this moment, our sport centre does not

provide racket rental service, so option 2 is still not available.

If all available equipment is already rented for the day, the screen will display “Not

available” next to the option. If the user still chose the option, a message saying all equipment

has been rented will show up.

21

When the user chose to rent an item, like in this example, the user chose to rent a futsal ball,

the display will ask him to enter renter’s name and IC number. The program will display a

rent ticket for the customer, where they need to show to the counter to receive their items.

Explanation Prepared By: ‘Afif Azhan Mohd Ismail

Code Prepared By: ‘Afif Azhan Mohd Ismail

22

PART 4: DEVELOPMENT ACTIVITIES

23

Online
Meeting

Date

Members
Participate in
the meeting

Activity Task for each
member

Task
Achieved
(Yes/No)

20/1/2021
10pm

Arif
‘Afif
Iskandar

Choosing leader

Brainstorming
regarding project
information and what
to be done

Trying to implement
certain concept such as
queue and stack in the
program

Determining additional
functions that are
related to program for
our sports center to
ease users’ usage

Arif
Initiate the
meeting and
suggest few
concepts

‘Afif
Relating few
things from
previous
assignment from
the project

Iskandar
Jot down
discussions and
produce report
template via
collaboration
tools

Yes

25/1/2021
4.30pm

Arif
‘Afif
Iskandar

Distributing tasks
regarding the project
report

Deeper discussion to
implement queue
concept in our
program

Arif
Explaining
system program
for module 3,4
and 5 regarding
data sorting,
searching and
deletion

‘Afif
Explaining
system program
for module 6
regarding daily
requirement rent
which apply
queue concept

Iskandar
Explaining
system program
for module 1 and
5 regarding data
display and data
insertion

Yes

24

29/1/2021
1.00 pm

Arif
‘Afif
Iskandar

Finalizing project
distribution by
assigning certain
things that are still not
done yet such as
flowcharts, conclusion.

Begins to record the
presentation video for
the project. Divide
topic on who is going
to explain which part
of the video.

Deciding who will
compile the videos and
publish it on YouTube
for easier submission
via elearning.

Arif
Recording video
presentation for
module 3,4 and 5
as well as system
prototype.

Volunteer to
compile all video
presentation from
other team
member

‘Afif
Recording video
presentation for
module 6 as well
as conclusion

Iskandar
Completing
presentation slide
by extracting
information from
main report

Recording video
presentations
regarding module
1 and 2
explanation and
also system
analysis and
design.

Yes

30/1/2021
3pm

Arif
‘Afif
Iskandar

Final touch up on
project report
documentation,
presentation slides,
source codes and video
presentation.

Arif
Finalizing video
presentation to be
uploaded to
YouTube

‘Afif
Finalizing project
report

Iskandar
Finalizing slides

Yes

PART 5: APPENDIX
5. 1 Source Code

#include <iostream>
#include <fstream>
#include <string>
#include <cstring>
#include <iomanip>
#include <conio.h>
#include <ctime>
#include <fstream>
using namespace std;

string Month[12] =
{"January","February","March","April","May","June","July","August","September","Octobe
r","November","December"};
string Sports[7] = {"Futsal","Badminton","Netball","Bowling","Swimming","Ping
Pong","Tennis"};
const int size = 10;
time_t rawtime;
struct tm* timeinfo;
ofstream out;
ifstream bout;

class Node
{
public:

 string name,sportType,month,ic,borrowedItem;
 int age,date,chin,chout,mon;
 Node* link; // pointer to next node
};

class EquipmentList
{

private:
int front, back,count;
string items[size];

public:

EquipmentList()
{

front = 0;
back = size-1;
count = 0;

}

25

~EquipmentList()
{

delete [] items;
}

bool isEmpty()
{

return(count == 0);
}

void insertEq(string newItem)
{

back = (back+1) % size;
items[back] = newItem;
++count;

}

string getFront()
{

return items[front];
}

void removeEq()
{

front = (front+1) % size;
--count;

}

};

EquipmentList Ball;

EquipmentList rentedBall;

class List
{

private:
 Node* head;
 Node* borrowHead ;

public:
 List(void) { head = NULL;

borrowHead = NULL;}
 ~List(void) { head = NULL;

borrowHead = NULL;};

26

 Node* InsertNode(string, string, string, int, string, int ,int ,int);
 Node* InsertNode(string, string, string, int, string, int ,int ,int,int);
 Node* InsertBorrowNode(string, string, int, int, string);
 void deleteNode(int);
 void Find();
 void FindName(string);
 void FindIC(string);
 void FindMonth(string);
 void Sort();
 void SortName(int);
 void SortIC(int);
 void SortAge(int);
 void Delete();
 void Insert();
 void Rent();
 void menu();
 int displayBorrower();
 int DisplayList();

};

Node* List::InsertNode(string n, string m, string s, int a, string i, int d, int ci, int co)
{

int currIndex = 0;
Node* currNode = head;
Node* prevNode = NULL;
while ((currNode && n>currNode->name)&&(currNode &&

s>currNode->sportType)&&(currNode && m>currNode->month)&&(currNode &&
a>currNode->age)&&

(currNode && i>currNode->ic)&&(currNode && d>currNode->date)&&(currNode
&& ci>currNode->chin)&&(currNode && co>currNode->chout))

{
 prevNode = currNode;
 currNode = currNode->link;
 currIndex++;

}

Node* newNode = new Node;
newNode->name= n;
newNode->sportType= s;
newNode->month= m;
newNode->age= a;
newNode->ic= i;
newNode->date= d;
newNode->chin= ci;
newNode->chout= co;

27

if(currIndex==0)
{

 newNode->link=head;
 head= newNode;

}

else {
newNode->link= prevNode->link;
prevNode->link= newNode;
}

return newNode;

}

Node* List::InsertNode(string n, string m, string s, int a, string i, int d, int ci, int co,int index)
{

int currIndex = 1;
Node* currNode = head;
while ((currNode && index > currIndex))

{
 currNode = currNode->link;
 currIndex++;

}

if(index>0 && currNode == NULL)
return NULL;

Node* newNode = new Node;
newNode->name= n;
newNode->sportType= s;
newNode->month= m;
newNode->age= a;
newNode->ic= i;
newNode->date= d;
newNode->chin= ci;
newNode->chout= co;

if(index==0)
{

 newNode->link=head;
 head = newNode;

}

else {

28

newNode->link = currNode->link;
currNode->link = newNode;
}

return newNode;

}

Node* List::InsertBorrowNode(string n, string i, int m, int d, string b)
{

int currIndex = 0;
Node* currNode = borrowHead;
Node* prevNode = NULL;
while ((currNode && n>currNode->name)&&(currNode &&

i>currNode->ic)&&(currNode && d>currNode->date))
{

 prevNode = currNode;
 currNode = currNode->link;
 currIndex++;

}

Node* newNode = new Node;
newNode->name= n;
newNode->mon= m;
newNode->ic= i;
newNode->date= d;

newNode->borrowedItem = b;

if(currIndex==0)
{

 newNode->link=borrowHead;
 borrowHead= newNode;

}

else {
newNode->link= prevNode->link;
prevNode->link= newNode;
}

return newNode;

}

int List::DisplayList()
{

int num = 1;

29

Node* currNode = head;

if(currNode)
{

cout << "\nCustomers List"
 << "\n--------------";

cout << left << endl << setw(4) << "No" << setw(20) << "Name" << setw(6)
<< "Age" << setw(22) << "Identification Card"

 << setw(6) << "Date" << setw(10) << "Month" << setw(15) <<
"Sport Type" << setw(6) << "Check In"

 << setw(6) << "Check Out" << endl;
}

else
{

cout << "There are no customer record in the list.";
return 0;

}

while(currNode != NULL)
{

cout << left << " " << setw(3) << num << setw(20) << currNode->name <<

setw(6) << currNode->age << setw(22) << currNode->ic
 << setw(6) << currNode->date << setw(10) << currNode->month <<

setw(15)<< currNode->sportType
 << setw(6) << currNode->chin << setw(6) << currNode->chout <<

endl;
 currNode = currNode->link;
 num++;
 }
 return num;
}

int List::displayBorrower()
{

int num = 1;
Node* currNode = borrowHead;

if(!currNode)
{
cout << "\nNo one has rented any equipment today yet.";
return 0;
}

else

30

{
cout << left << endl << setw(4) << "No" << setw(20) << "Name" << setw(22)

<< "Identification Card"
 << setw(6) << "Date" << setw(10) << "Month" << setw(5) <<

"Rented Item"<< endl;
}

while(currNode != NULL)
{

cout << left << " " << setw(3) << num << setw(20) << currNode->name <<

setw(22) << currNode->ic
 << setw(6) << currNode->date << setw(10) <<

Month[currNode->mon] << currNode->borrowedItem << endl;
 currNode = currNode->link;
 num++;
 }
 return num;
}

void List::FindName(string N)
{

Node* currNode = head;
while (currNode && currNode ->name != N) {
currNode = currNode ->link;
}

if (currNode)

{
cout << "Below is the information of " << N << ":" << endl << endl;
cout << "Name : " << currNode ->name << endl

 << "Age : " << currNode ->age << endl
 << "IC : " << currNode ->ic << endl
 << "Sport : " << currNode ->sportType << endl
 << "Date : " << currNode ->date << " " << currNode

->month << endl
 << "Checked in time : " << currNode ->chin << endl
 << "Checked out time : " << currNode ->chout << endl<<endl;

}

else

cout << "There is no customer named " << N << " in the record." << endl <<
endl;

getch();

31

return;
}

void List::FindIC(string I)
{

Node* currNode = head;
while (currNode && currNode->ic != I) {
currNode = currNode->link;
}

if (currNode)

{
cout << "\nBelow is the information about the customer with IC " << I

<< " :" << endl <<endl ;
cout << "Name : " << currNode->name << endl

 << "Age : " << currNode->age << endl
 << "IC : " << currNode->ic << endl
 << "Sport : " << currNode->sportType << endl
 << "Date : " << currNode->date << " " << currNode->month

<< endl
 << "Checked in time : " << currNode->chin << endl
 << "Checked out time : " << currNode->chout << endl<<endl;

}

else

cout << "There is no customer with IC " << I << " in the record.\n";
getch();
return;

}

void List::FindMonth(string M)
{

Node* currNode = head;
int num = 0;
while (currNode)
{

if (currNode->month == M)

{
num++;
if (num == 1)
{

cout << "\nBelow is the customer(s) that used the sport centre
in " << M << " :" << endl << endl;

32

cout << left << setw(4) << "No" << setw(20) << "Name" <<
setw(6) << "Age" << setw(22) << "Identification Card"

 << setw(6) << "Date" << setw(10) << "Month" << setw(15) <<
"Sport Type" << setw(6) << "Check In"

 << setw(6) << "Check Out" << endl;
}

cout << left << setw(4) << num << setw(20) << currNode->name <<

setw(6) << currNode->age << setw(22) << currNode->ic
 << setw(6) << currNode->date << setw(10) << currNode->month <<

setw(15)<< currNode->sportType
 << setw(6) << currNode->chin << setw(6) << currNode->chout <<

endl;
}

currNode = currNode->link;
}

if(num == 0)
cout << "There is no customer enter the sport centre in " << M << ".";
cout << endl << endl;
getch();
return ;

}

void List::Find()
{

int ch,m;
string tempIC,tempName,tempMonth;

 do
{

system("cls");
cout << "--\n";
cout << " DATA SEARCHING\n";
cout << "--\n";

cout << "\n\t\tChoose Your Option\n"

 << "\t\t[1] Search by Name"
 << "\n\t\t[2] Search by Identification Card"
 << "\n\t\t[3] Search by Month"
 <<"\n\t\t-\n\t\t[0]Back\n\n";

 cout << "Option: ";
 cin >> ch;
 switch(ch)
 {
 case 1 :
 cin.ignore();

cout << "\nEnter Name: ";

33

getline(cin,tempName,'\n');
cout << endl;

 FindName(tempName);
 break;

 case 2:

cout << "\nEnter Identification Card: ";
cin >> tempIC;
FindIC(tempIC);
break;

 case 3:
 cout << "\n\t\t\nChoose which month";
 cout << "\n\t\t[1] January"
 << "\n\t\t[2] February"
 << "\n\t\t[3] March"
 << "\n\t\t[4] April"
 << "\n\t\t[5] May"
 << "\n\t\t[6] June"
 << "\n\t\t[7] July"
 << "\n\t\t[8] August"
 << "\n\t\t[9] September"
 << "\n\t\t[10] October"
 << "\n\t\t[11] November"
 << "\n\t\t[12] December"
 << "\n\t\t-"
 << "\n\t\t[0] Back";

cout << "\n\nOption: ";
cin >> m;

if(m == 0)
Find();

if(m < 1 || m > 12)
{
cout << "Invalid option ! Please try again." << endl;

 getch();
 Find();
 }

FindMonth(Month[m-1]);
 break;

case 0 :
return;

34

 default :
 cout << "\nInvalid option ! Please try again." << endl;
 getch();
 }

 }
while(ch!=0);

}

void List::Delete()
{

int ch;
system("cls");
cout << "--\n";
cout << " DATA DELETION\n";
cout << "--\n";
cout << "\nCurrent List :\n";
DisplayList();
cout << "\nSelect which customer record you want to delete ('0' to

return)\nOption : ";
cin >> ch;
if(ch == 0)
menu();
deleteNode(ch);
cout << "\nThe list after deletion process :\n";
DisplayList();
cout << endl;
cout << "Returning to main menu.";
_getch();

 menu();
}

void List::deleteNode(int a)
{

int currIndex = 1;
char choice;
Node* currNode = head;
Node* prevNode = NULL;

while (currNode && currIndex != a)
{
prevNode = currNode;
currNode = currNode->link;
currIndex++;
}

if(!currNode)

35

{
cout << "\nThere is no number '" << a << "' in the list. Returning to main

menu...\n\n";
_getch();
menu();

}

cout << "\nDelete the record for " << currNode->name << " ? Option (Y/N) : ";
cin >> choice;

if(choice == 'N')
Delete();

if (currNode) {

if (prevNode)
{
prevNode->link = currNode->link;
delete currNode;
}

else {
head = currNode->link;
delete currNode;
}
return ;
}

cout << "There is no number '" << a <<"' in the list.";
return;

}

void List::Insert()
{

string Iname,Imonth,Iic;
 int Iage,Idate,Ichin,Ichout,ch,Inum,IsportType;

system("cls");
cout << "--\n";
cout << " DATA INSERTION\n";
cout << "--\n";
Inum = DisplayList();

cout << "\n\n\t\tChoose Your Option\n"

 << "\t\t[1] Insert data in the beginning of the list"
 << "\n\t\t[2] Insert data in the middle of the list"
 << "\n\t\t[3] Insert data in the end of the list"
 <<"\n\t\t-\n\t\t[0]Back\n\n";

36

 cout << "Option: ";
 cin >> ch;

 if(ch<0 || ch>3)
 {
 cout << "\nInvalid option! Please try again.";
 getch();
 Insert();

}

if(ch==0)
menu();

 cout << "\nPlease fill the information for the new data :\n";
 cin.ignore();
 cout << "\nName : ";
 getline(cin,Iname,'\n');
 cout << "Age : ";
 cin >> Iage;
 cout << "IC : ";
 cin >> Iic;
 cout << "Sport Type : [1] Futsal\n"
 << " [2] Badminton\n"
 << " [3] Netball\n"
 << " [4] Bowling\n"
 << " [5] Swimming\n"
 << " [6] Ping Pong\n"
 << " [7] Tennis\n\n"
 << " Choice: ";
 cin >> IsportType;
 cout << "\nDate of Check In and Check Out (i.e.: 7 January) : ";
 cin >> Idate;
 cin >> Imonth;
 cout << "Check In time (24H) : ";
 cin >> Ichin;
 cout << "Check Out time (24H) : ";
 cin >> Ichout;

 if(ch == 1)
 {
 InsertNode(Iname,Imonth,Sports[IsportType-1],Iage,Iic,Idate,Ichin,Ichout);
 }

 if(ch == 2)
 {

37

InsertNode(Iname,Imonth,Sports[IsportType-1],Iage,Iic,Idate,Ichin,Ichout,Inum/2-1);

 }

 if(ch == 3)
 {

InsertNode(Iname,Imonth,Sports[IsportType-1],Iage,Iic,Idate,Ichin,Ichout,Inum-1);
 }

 cout << "\nThe list after insertion process.\n";

DisplayList();

cout << "\nReturning to main menu.";
_getch();
return;

}

void List::SortName(int choice)
{
if(choice==1)
{
 Node* dummy = new Node;
 Node* currNode = head;

 while (currNode != NULL)
 {
 Node* temp = currNode->link;
 Node* prevNode = dummy;
 Node* lk = dummy->link;

 while (lk != NULL)
 {

 if (lk->name > currNode->name)
 {

 break;
 }

 prevNode = lk;
 lk = lk->link;
 }
 currNode->link = lk;
 prevNode->link = currNode;
 currNode = temp;

38

 }
 head = dummy->link;
}
else if(choice==2)
{
 Node* dummy = new Node;
 Node* currNode = head;

 while (currNode != NULL)
 {
 Node* temp = currNode->link;
 Node* prevNode = dummy;
 Node* lk = dummy->link;

 while (lk != NULL)
 {
 if (lk->name < currNode->name)
 {
 break;
 }

 prevNode = lk;
 lk = lk->link;
 }
 currNode->link = lk;
 prevNode->link = currNode;
 currNode = temp;
 }
 head = dummy->link;
}
cout << "\nSorting process successful. Please refer to the new list below. \n";
DisplayList();
getch();
Sort();
}

void List::SortIC(int choice)
{
if(choice==1)
{
 Node* dummy = new Node;
 Node* currNode = head;

 while (currNode != NULL)
 {
 Node* temp = currNode->link;

39

 Node* prevNode = dummy;
 Node* lk = dummy->link;

 while (lk != NULL)
 {
 if (lk->ic > currNode->ic)
 {
 break;
 }

 prevNode = lk;
 lk = lk->link;
 }
 currNode->link = lk;
 prevNode->link = currNode;
 currNode = temp;
 }
 head = dummy->link;
}
else if(choice==2)
{
 Node* dummy = new Node;
 Node* currNode = head;

 while (currNode != NULL)
 {
 Node* temp = currNode->link;
 Node* prevNode = dummy;
 Node* lk = dummy->link;

 while (lk != NULL)
 {
 if (lk->ic < currNode->ic)
 {
 break;
 }

 prevNode = lk;
 lk = lk->link;
 }
 currNode->link = lk;
 prevNode->link = currNode;
 currNode = temp;
 }
 head = dummy->link;
}

40

cout << "\nSorting process successful. Please refer to the new list below. \n";
DisplayList();
_getch();
Sort();
}

void List::SortAge(int choice)
{
if(choice==1)
{
 Node* dummy = new Node;
 Node* currNode = head;

 while (currNode != NULL)
 {
 Node* temp = currNode->link;
 Node* prevNode = dummy;
 Node* lk = dummy->link;

 while (lk != NULL)
 {
 if (lk->age > currNode->age)
 {
 break;
 }

 prevNode = lk;
 lk = lk->link;
 }
 currNode->link = lk;
 prevNode->link = currNode;
 currNode = temp;
 }
 head = dummy->link;
}
else if(choice==2)
{
 Node* dummy = new Node;
 Node* currNode = head;

 while (currNode != NULL)
 {
 Node* temp = currNode->link;
 Node* prevNode = dummy;
 Node* lk = dummy->link;

41

 while (lk != NULL)
 {
 if (lk->age < currNode->age)
 {
 break;
 }

 prevNode = lk;
 lk = lk->link;
 }
 currNode->link = lk;
 prevNode->link = currNode;
 currNode = temp;
 }
 head = dummy->link;
}
cout << "\nSorting process successful. Please refer to the new list below. \n";
DisplayList();
_getch();
Sort();
}

void List::Rent()
{

int ch,ch1;
string bName,bIC,bDay,bMonth;
system("cls");
cout << "--\n";
cout << " Equipment Rental - " << timeinfo->tm_mday << " " <<

Month[timeinfo->tm_mon];
cout << "\n--\n";
cout << "\n\t\tChoose Your Option\n"
 << "\t\t[1] Rent a futsal ball";

if(Ball.isEmpty())
cout << " [Not Available]";

cout << "\n\t\t[2] Rent a racket [Coming Soon]";
cout << "\n\t\t[3] Display rental record.";
cout << "\n\t\t-\n\t\t[0]Back\n\n"
 << "Option: ";
cin >> ch;

if(ch==0)
menu();

42

else if(ch==1)
{

if(Ball.isEmpty())
{
cout << "\nAll futsal balls have been rented for the day. Please try

again tomorrow!";
getch();
}

else
{
cin.ignore();
cout << "\nPlease enter your information below."

 << "\n\nName : ";
getline(cin,bName,'\n');

 cout << "IC : ";
 cin >> bIC;

InsertBorrowNode(bName,bIC,timeinfo->tm_mon,timeinfo->tm_mday,Ball.getFront());
 out.open("RentedItem.txt",ios::app);
 out << bName << endl << bIC << endl << Ball.getFront() << endl <<

timeinfo->tm_mday << endl << timeinfo->tm_mon+1 << endl << endl;
 out.close();
 rentedBall.insertEq(Ball.getFront());

 cout << "\nRent request successful! Please show the ticket below to the

counter to retrieve your item.\n";
 cout << left <<"\n\t\tX--X"
 << "\n\t\t| |"
 << "\n\t\t|\t Name : " << setw(30) << bName << "|"
 << "\n\t\t|\t IC : " << setw(30) << bIC << "|"
 << "\n\t\t|\t Date : " << setw(2) << timeinfo->tm_mday << " " <<

setw(27) << Month[timeinfo->tm_mon] << "|"
 << "\n\t\t|\t Item : " << setw(30) << Ball.getFront() << "|"
 << "\n\t\t| |"
 << "\n\t\t| |"
 << "\n\t\t| G7 Sports Centre Sdn. Bhd. |"
 << "\n\t\t| |"
 << "\n\t\tX--X";

 Ball.removeEq();
 }

}

43

else if(ch==3)
{

displayBorrower();
cout << endl;

}

else
cout << "\nInvalid option. Please try again.";
_getch();
Rent();

}

void List::Sort()
{

int ch,ch1;
system("cls");
cout << "--\n";
cout << " DATA SORTING\n";
cout << "--\n";
cout << "\n\t\tChoose Your Option\n"
 << "\t\t[1] Sort by Name"

 << "\n\t\t[2] Sort by Identification Card"
 << "\n\t\t[3] Sort by Age"
 << "\n\t\t-\n\t\t[0]Back\n\n"

 << "Option: ";

cin >> ch;

if(ch==0)
menu();

else if(ch==1)

{
cout << "\n\t\tChoose Your Option\n"

 << "\t\t[1]Ascending Order\n\t\t[2]Descending Order\n\t\t-\n\t\t[0]Back\n\n";
 cout << "Option: ";
 cin >> ch1;

 if(ch1==0)
 Sort();

 else if(ch1 == 1 || ch1 ==2)
 SortName(ch1);

 else
 cout << "\nInvalid option ! Returning to sorting menu.";

44

 _getch();
}

else if(ch==2)

{
cout << "\n\t\tChoose Your Option\n"

 << "\t\t[1]Ascending Order\n\t\t[2]Descending Order\n\t\t-\n\t\t[0]Back\n\n";
 cout << "Option: ";
 cin >> ch1;

 if(ch1==0)
 Sort();

 else if(ch1 == 1 || ch1 ==2)
 SortIC(ch1);

 else
 cout << "\nInvalid option ! Returning to sorting menu.";
 _getch();

}

else if(ch==3)

{
cout << "\n\t\tChoose Your Option\n"

 << "\t\t[1]Ascending Order\n\t\t[2]Descending Order\n\t\t-\n\t\t[0]Back\n\n";
 cout << "Option: ";
 cin >> ch1;

 if(ch1==0)
 Sort();

 else if(ch1 == 1 || ch1 ==2)
 SortAge(ch1);

 else
 cout << "\nInvalid option ! Returning to sorting menu.";

}

else
cout << "\nInvalid option. Please try again.";
_getch();
Sort();

}

void List::menu()
{

45

int ch;

do
{
system("cls");
cout << "--\n";
cout << " SPORTS CENTRE CUSTOMERS RECORD\n";
cout << "--\n";
cout << "\n\t\tChoose Your Option\n"

 << "\t\t[1] Data Display"
 << "\n\t\t[2] Data Insertion"

 << "\n\t\t[3] Data Sorting"
 << "\n\t\t[4] Data Searching"
 << "\n\t\t[5] Data Deletion"
 << "\n\t\t[6] Daily Equipment Rental"
 << "\n\t\t-\n\t\t[0]Exit\n\n";

 cout << "Option: ";
cin >> ch;

 switch(ch)
 {
 case 1 :
 DisplayList();
 cout << endl;
 getch();
 break;

 case 2:
 Insert();
 break;

case 3:
Sort();
break;

 case 4 :
 Find();
 break;

 case 5:
 Delete();
 break;

 case 6:
 Rent();
 break;

46

case 0:
cout << endl << "Thank youuuuuuuu :)";

out.open("AvailableBall.txt",ios::out);

while(!Ball.isEmpty())
{
out << Ball.getFront() << endl;
Ball.removeEq();
}
out.close();

out.open("RentedBall.txt",ios::app);

while(!rentedBall.isEmpty())
{
out << rentedBall.getFront() << endl;
rentedBall.removeEq();
}
out.close();

 exit(0);

 default:
 cout << "\nInvalid option! Please try again.";
 _getch();

}

}while(ch!=0);
return;

}

int main()
{
List cust;
string inpName,inpIC,inpItem,usedBall;
int inpD, inpM;

string ballID[size] = {"Abidas B1","Abidas B2","Abidas B3","Abidas B4","Abidas
B5","Naik B6","Naik B7","Naik B8","Naik B9","Naik B10"};
cust.InsertNode("Farhan Amir","July","Futsal",28,"921228031859",3,2100,2300);
cust.InsertNode("Saiful Badri","April","Badminton",19,"010409018733",1,800,1100);
cust.InsertNode("Nurul Ain","Mac","Netball",24,"960616148842",15,1500,1800);
cust.InsertNode("Wing Xing","September","Bowling",18,"020217081158",29,1100,1400);

47

cust.InsertNode("Riveena
Andria","November","Swimming",32,"880715100366",18,1400,1700);
cust.InsertNode("Uzair
Hakimi","December","Badminton",25,"950304011217",21,2000,2300);
cust.InsertNode("Looi Jay","February","Futsal",42,"780527023048",9,2000,2300);
cust.InsertNode("Pavithra Rajan","January","Bowling",37,"831118035172",8,1600,1900);
cust.InsertNode("Ainul Daniesya","July","Ping Pong",31,"890130148814",14,900,1100);
cust.InsertNode("Harith Hamizan","May","Tennis",20,"001015056901",16,800,1100);

//for(int i=0;i<size;i++)
//Ball.insertEq(ballID[i]);

// Get Local Time
time(&rawtime);
timeinfo = localtime(&rawtime);

// Get balls that are available for rent

bout.open("AvailableBall.txt");

while(bout.eof())
{

getline(bout,usedBall,'\n');
if(usedBall == "")
continue;
Ball.insertEq(usedBall);

}
bout.close();

// Get balls that are rented recently
bout.open("RentedBall.txt",ios::in);
while(bout.good())
{

getline(bout,usedBall,'\n');
rentedBall.insertEq(usedBall);

}
bout.close();

// Get list of Past Equipment Borrower
bout.open("RentedItem.txt",ios::in);
while(bout.good())
{

getline(bout,inpName,'\n');
if(inpName == "")

48

continue;
getline(bout,inpIC,'\n');
getline(bout,inpItem,'\n');
bout >> inpD;
bout >> inpM;
cust.InsertBorrowNode(inpName,inpIC,inpM-1,inpD,inpItem);

}
bout.close();

// Check if day has changed, if yes, put yesterday's rented ball into available balls for rent
queue

if(inpD != timeinfo->tm_mday)
{

while(!rentedBall.isEmpty())
{
Ball.insertEq(rentedBall.getFront());
rentedBall.removeEq();
}

out.open("RentedBall.txt",ios::out);
out.close();
}

cust.menu();

return 0;
}

---- END OF DOCUMENTATION -----

49

