

School of Computing Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA

SUBJECT	:	SECR1013 D	DIGITAL	LOGIC	
SESSION/SEM	:				
LAB 3	:	SYNCHRONOUS	S DIGIT	AL C	COUNTER
NAME	:	Abdulrahman Ahmed Rafa	at Abdelham	id	
DATE	:				

Identifying the Properties of a Synchronous Counter

A. <u>Aims</u>

- 1) Expose the student with experience on constructing synchronous counter circuit using Flip-Flop IC, Basic Gate ICs, Breadboard and ETS-5000 Digital Kit.
- 2) Promote critical thinking among students by analysing the given circuit and identifying the behaviour of the digital circuit.

B. Objectives

The objectives of this lab activity are to:

- 1) Implement a synchronous counter circuit into physical circuit using Breadboard, Flip-Flops, Basic Gates and Switches.
- 2) Completing the next-state table of the counter circuit.
- 3) Sketch the state diagram of the counter circuit.
- 4) Identify the properties of the counter.

C. Materials And Equipment

Materials and equipment required for this lab are as follows:

Item Name	Number of Item
1. Breadboard	1
2. 7408 Quad 2-Input AND	1
3. 7404 Hex Inverter	1
4. 7432 Quad 2-input OR	1
5. 7476 Dual J-K Flip Flop	1
6. ETS-5000 Digital Kit	1

D. Preliminary Works

1) Determine the logic level for each input combinations in Table 1 so that the desired result can be realized.

Table 1							
Desired Result	383835	888	J	K	CLK	Q	
Set initial value Q = 1	0	1	X	X		1	
Output Q stays the same	1	1	0	0	₽	1	
Output Q become 0, no change in asynchronous input	1	0	0	0	⇒	0	
Output Q is not the previous Q	1	1	1	1	₽	1	
RESET Q	1	1	0	1	₽	0	
SET Q	1	1	1	0	₽	1	

- 2) Answer all questions.
- a) Which state that JK flip-flop has, but not on SR flip-flop.

Toggle State

b) Identify whether the JK flip flop in 7476, is a positive-edge triggered or negative-edge triggered flip flop.

Based on table 1, it's a negative-triggered FF, as all of the arrows are aiming down.

E. Lab Activities

1) You are given a counter circuit as shown in Figure 4.

Figure 4: A Synchronous Counter Circuit

- 2) By using all materials and equipment's listed in section C, construct the physical circuit of Figure 4. (Make sure all ICs are connected to Vcc and GND).
- Investigate the behaviour of the counter by observing the next state of the counter for all combination of *Present State* and *X* values. Complete the *NextState* table of the counter in Table 2. Ensure the Switch 0 is in HIGH state.
 (0=LOW, 1=HIGH)

Table	2
-------	---

Switch 7	Рі	Present State		xt State
X	Q1	Q0	Q1	Q0
	LED 1	LED 0	LED 1	LED 0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

4) By referring to the *Next-State* in Table 2, sketch the state diagram of the counter.

- 5) By referring to the *Next-State* in Table 2 and the state diagram in (4), answer all questions.
 - a) What is the main indicator to decide that the counter is a synchronous counter? The common clock that simultaneously triggers all the FF's.
 - b) How many states are available for the counter and what are they? There are 4 states. Which are: 00, 01, 10, 11.
 - c) What is the function of Switch 7 (X) in the circuit? It's an input switch.
 - d) What is the function of Switch 0 and Switch 1 in the circuit?Switch 0 is the clear function switch and switch 1 is a preset function.
 - e) Is the counter a saturated counter or recycle counter? It's a Saturated Counter.
- 6) Referring to state diagram in 4, draw and built a synchronous counter using D flip-flop.
 - a) Built the next state and transition table using the header in Table 3

Table 3						
Input	Present State		Next State		D FF Transition	
Χ	Q1	Q0	Q1+	Q0+	D1	D 0
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	1	0	1	0

7) Repeat steps in Q(6) using T flip-flop.

a)

Input	Present S	Present State		Next State		T FF Transition	
Χ	Q1	Q0	Q1+	Q0+	T1	T0	
0	0	0	0	1	0	1	
0	0	1	1	0	1	1	
0	1	0	1	1	0	1	
0	1	1	1	1	0	0	
1	0	0	0	0	0	0	
1	0	1	0	0	0	1	
1	1	0	0	1	1	1	
1	1	1	1	0	0	1	

b)