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a) Find 1.
17 16+t5+14
= 13+7+4=24
16=t5+14+3
= T+4+2=13
15=t4+13+12
=4+2+1=7
14=t3+12+tl
=2++1=4
13=t2+t1-+10
= 1+1+0=2
b) Write a recursive algorithm to compute #,,, n>3.
Input: n positive integer
Output: t(n)
t(n)

an=3(an-1+an-2),n>2




7. If /:R— R and g:R—> R are both one-to-one, is f + g also one-to-one? Justify your answer.

if f x1 = f x2 then x1 = x2 Or, equivalently, if x1 # x2,then f x1# f x2.
Symbolically, f : X ®Y is one-to-one 0"x1, x21X, if f (x1) = f (x2 ) then x1=x2 ..
So yes it is one-to-one.

8. With each step you take when climbing a staircase, you can move up either one stair or two
stairs. As a result, you can climb the entire staircase taking one stair at a time, taking two at a
time, or taking a combination of one- or two-stair increments. For each integer n=1, if the
staircase consists of n stairs, let ¢, be the number of different ways to climb the staircase.
Find a recurrence relation for ¢y, ¢, ..., Ca.

Given We can climb a staircase using 1 stair at a time or 2 stairs at a time
or any combination of I-stair and 2-stair steps

Cn=Number of different ways to climb a staircase with n stairs.

When n =

1, the staircase only contains | stair and thus we can only take

the staircase by using | stair at a time once, which is exactly 1 way

=1

When n = 2 the staircase only contains 2 stairs. We can then take the 2
stairs at one or take the stairs one by one, which thus results in 2 different
ways.

c2=2

When n > 3, the staircase contains more than 2 stairs and thus we will need
to use a combination of 1-stair and 2-stair steps

If the last move will be a 1-stair step, then there were an- | ways to arrive
at the previous stair (which was a staircase with n | stairs

If the last move will be a 2-stair step. then there were an-2 ways to arrive
at the previous stair (which was a staircase with n - 2 stairs)

The total number of ways is then the sum of the number of ways in which
the last move is a l-stair step and the number of ways in which the last
move is a 2-stair step.

C=1+C-2

C1=1,C2=2,Cn=Cn-1+Cn-2whenn>=3

9. The Tribonacci sequence (1) is defined by the equations,

10=0,n=0=1, =l tip2tla for all n=3.
0,1,1,.....
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S T={(xy) eAxB | (x,y) € Sand (x,y) € T}
SUT={(xy) eAdxB|(xy) € Sor(x,y) € T}

Let A={-1, 1,2, 4} and B={1,2} and defined binary relations S and 7 from 4 to B as
follows:

Forall (x,y) edxB, xSy xl=|

Forall (x,y) €eAxB, xTy<«> x—yiseven

State explicitly which ordered pairs are in AxB, S, T, S~ T.and SU T.
AxB={ (-1,1),(-1.2),(1,1),(1,2),(2,1),(2,2),(4,1).(4,2)}
S={-LD,(L1)(2.2)}

T={CLD(L4(2,2),(4.2)]

SAT={(-1,1)(1,1),(2,2)}

SUT={(-1,1), (1,1),(2,2),(4,2)}
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