Design thinking Chapter 5-The System Unit

Group 2 Abir Bin Rahman Bhuiyan Eyu Si Xiong Muhammad Nazreen Bin Mubin Teng Jia Jing

Introduction of design thinking

Smaller world

Develop creativity level

Increase thinking skill

Comprehensive visualization

Learn to organize everything

Design Thinking Process

Stage 1:Emphathy

We held interviews with several people, who are students in UTM and also familiar with devices and technology to hear their opinions regarding the system unit problem.

Question:

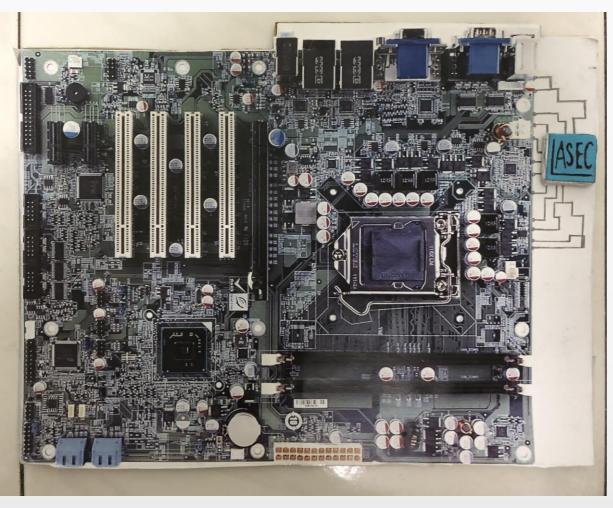
- What are the problems you usually face toward the device and system nowadays?
- What kind of problems you face regarding the laptop charging issue?

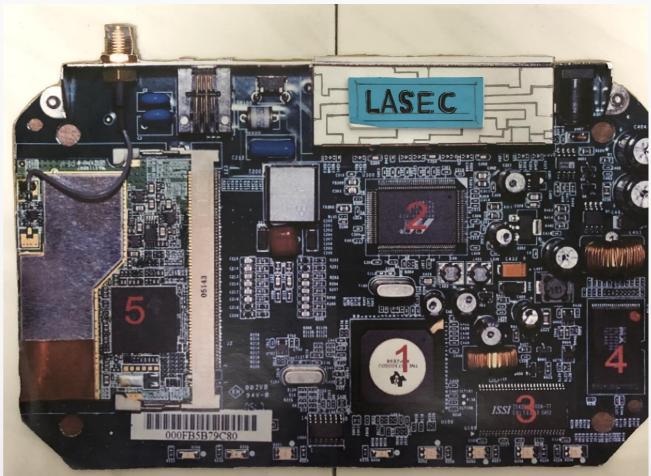
Stage 2-Define

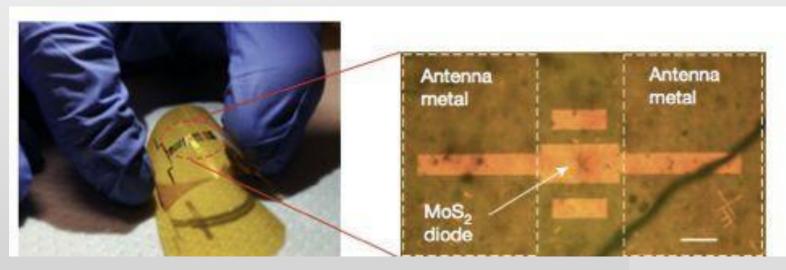
- Collect the information from the users
- Response on the Charging Issue
 - The charger was left at home
 - It too heavy too bring
 - The battery is out before I can connect the charger
 - No socket at the place
- Stage 3-Ideate
 - \succ Each of us presented the ideas to solve the problem
 - > Name of the product: *LASEC*(*laptop secondary charger*)
 - How does it work?: The laptop will need to connect to Wi-Fi and it will captures Wi-Fi signal to convert into voltage.

- Stage 4-Prototype
 - Convert our idea to reality
 - started by analysing fundamental steps and material needed

Stage 5-Test


- We showed our prototype and explained how LASEC function to our users
- They were satisfied with our idea and they also gave us some feedback to let us made some improvements.


Laptop Secondary Charger(LASEC)


HOW LASEC WORK?

Motherboard in laptop

Router

Rectenna

THE ADVANTAGES OF LASEC

- No need to buy individually
- Easily connect via Wi-Fi
- Everyone can use
- User Friendly
- No need to bring those heavy cable
- No tension about battery die
- Battery charges in a short time

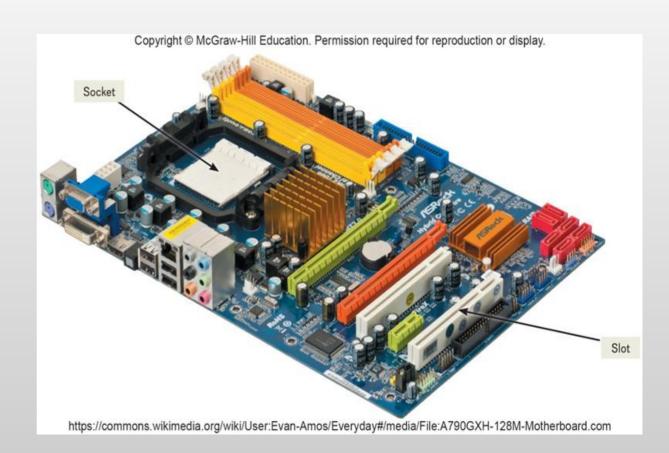
CHAPTER 05 THE SYSTEM UNIT

System Unit Types

- 1. Desktops
 - System unit is in a separate case
 - Tower Units
 - All-in-Ones
 - All components including monitor
- 2. Laptops
 - Portable and much smaller
 - Ultrabooks laptop and tablet in one
 - Gaming high end graphics
- 3. Tablets
 - Mini tablet
- 4. Smartphone
 - Most popular device handheld compute
 - Extend the capabilities of cell phones
- 5. Wearables
 - Contain embedded computers

Media Center

Netbook



Handheid

System Unit

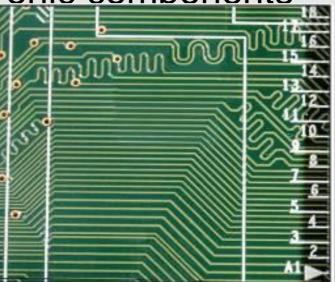
- System Board
- 1. Main board or motherboard
- 2. Controls communications
- 3. Components connect to the system board
- 4. Data path
- 5. Traffic monitor

System Board Components

Sockets

Connection point for chips

Chips


- Tiny circuit boards etched onto squares of silicon
- Silicon chip, semiconductor, or integrated circuit
- Mounted on carrier pac

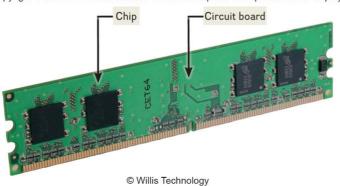
Slots

Provide a connection point for specialized cards or circuit boards

Bus lines

Provide pathways that support communication among the various electronic components

Microprocessor



- Central Processing Unit (CPU) or Processor
 - Contained on a single chip call a Microprocessor
 - Brains of the computer
- Two Basic Components of the CPU
 - Control unit
 - Tells the computer system how to carry out a program's instruction
 - Arithmetic-logic unit (ALU)
 - Performs arithmetic and logical operations

Memory

- Holding area for data, instructions, and information
- Contained on chips connected to the system board
- Three well-known types of memory chips:
 - RAM (Random Access Memory)
 - ROM (Read Only Memory)
 - Flash Memory

Copyright © McGraw-Hill Education. Permission required for reproduction or display

Random Access Memory (RAM)

- A chips hold programs and data that the CPU is presently processing
 - Volatile or temporary contents are lost when computer is powered off
- Cache memory temporary, high-speed holding area between the memory and CPU
 - Additional RAM can be added using an expansion module called a DIMM (Dual in-line memory module)

Memory

Read-only memory(ROM)

- Read-only memory (ROM)
 - Information stored by the manufacturer
 - Non-volatile and cannot be changed
- CPU can read, or retrieve data and programs in ROM but the computer cannot change ROM
- Contain special instructions
 - Start the computer
 - Access memory
 - Handle keyboard input

Memory

Flash memory

- •Flash memory combines of the features of:
 - Like RAM, it can be updated
 - Like ROM, it is non-volatile
 - Contains startup information
 - •BIOS (basic input/output system)
 - •Amount of RAM

• Type of keyboard, mouse, and secondary storage devices connected

Power Supply

- Computers require direct current (DC) power converting alternating current (AC) from wall outlets or batteries
 - Desktop computers have a power supply unit in the system unit
 - Laptops use AC adapters in the system unit
 - Tablets and mobile devices use internal AC adapters
 - Smartphones can use wireless charging platforms

Copyright © McGraw-Hill Education. Permission required for reproduction or displa

Conclusion

The learning outcome are achieved

- 1) Gained learning experience for us while working on this project.
- 2) Gave me a real insight into improving our thinking skills.
 - 3) The joy of working involved while tackling the various problems and challenges.