M

UNIVERSITI TEKNOLOGI MALAYSIA

SECJ 2253 Requirements Engineering & Software Modeling

Sem.2 2020/2021

PHASE 3: REQUIREMENTS MODEL DOCUMENT
(FUNCTIONAL, DATA, BEHAVIORAL PERSPECTIVES)

Mipanzu Online File Management System

<Mipanzu>

Team Members:

1. HUSNY MUSHARRAF BIN SHAMSUL KAMAL AT9EC0051
2. TAN CHIAW TORNG A19ECO0167
3. SEE WEN XIANG A19EC0206

4. WAN LUQMAN BIN WAN ZULLKEFLI A19EC0209

Table of Contents

Item Page No | Prepared by Moderated by
Husny,
Introduction 1 Chiaw Torng
Wan Lugman
Functional Perspective: Use Case (UC) Wen Xiang,
2 Chiaw Torng
Documentation (Diagram — UML UCD) Chiaw Torng
Functional Perspective: Use Case (UC) All members
Documentation (Specification — UCS) & UML
Activity Diagram (AD)
UC001 <Open new file>UCS & AD 3-6 Wan Lugman
UC002 <Close file> UCS & AD 7-10 Husny
UCO003 <Track file location> UCS & AD 11-12 | Wan Lugman Chiaw Torng
UC004 <Report the loss of file>UCS & AD 13-15 | Husny
UCO005 <Dispose of file>UCS & AD 16-20 | Chiaw Torng
UCO006 <Borrow file>UCS & AD 21-24 | Wen Xiang
UCO007 <View file access record> UCS & AD 25-26 | Chiaw Torng
UC008<Detect the late return of file> UCS & AD 27-28 | Wan Lugman
UCO009 <Return file> UCS & AD 29-30 | Wen Xiang
Data Perspective: UML Domain Class Diagram
31 All members Chiaw Torng
(DCD)
Behavioral Perspective: State-Transition Diagram
32-36 | All members Chiaw Torng
(STD)
Conclusion 37 All members Chiaw Torng
References 37 All members Chiaw Torng

Business Process Mapping to Use Cases

Which Business
Process related
to the use case

UCID

UC

Use case
specification

PIC

Handle the open
file procedure

UCo001

Open new file

Use Case
Specification for
UC001 <Open
new file>

Wan Lugman

Handle the close
file procedure

UucCo002

Close file

Use Case
Specification for
UC002 <Close
file>

Husny

Handle the borrow
file procedure

UcCo003

Track the file
location

Use Case
Specification for
UC003 <Track
file location>

Wan Lugman

UCo006

Borrow file

Use Case
Specification for
UC006 <Borrow
file>

See Wen Xiang

Handle the return
file procedure

UCco009

Return file

Use Case
Specification for
UCO009 <Return
file>

See Wen Xiang

Handle the dispose
file procedure

UCo00s

Dispose of file

Use Case
Specification for
UC005 <Dispose
of file>

Tan Chiaw Torng

Monitor file
access

ucCo004

Report the loss of
file

Use Case
Specification for
UC004 <Report
the loss of file>

Husny

ucoo7

View file access
record

Use Case
Specification for
UC007 <View
file access
record>

Tan Chiaw Torng

UCo008

Detect the late
return of file

Use Case
Specification for
UC008 <Detect
the late return of
file>

Wan Lugman

Remark: Italic text is cross-reference hyperlink.

Use cases mapping with Activity, and Sequence Diagram, State, Domain

State diagram (ONE)
Give the ONE controller

Domain Model
Give the name of

. . . Sequence class in sequence diagram | entity class in
LA(eELE Activity Diagram Diagram which you you will sequence that which
represent in state you will include in
diagram domain model
Figure 2.1.1: File
UCoo1 Activity Diagram for Sequence Diagram | State-Transition Diagram | SAOfficer
UC001 <Open new file> | for UC001 <Open | for <File Class> RUClerk
new file> Letter
Figure 2.2.1: File
UCo02 Activity Diagram for Sequence Diagram | State-Transition Diagram SAOfficer
UC002 <Close file> for UC002 <Close | for <File Class>
file> RUClerk
Activity Diagram for gelzglti’;iijbll:;l ram | State-Transition Diagram File
UCo03 UC003 <Track file 1 S : 8 SAOfficer
. for UC003 <Track | for <File Class>
location> . RUClerk
file location>
U, Figure 2.4.1: borrowFileRecord
of file> P for UC004 <Report SAOfficer
the loss of file> RUClerk
State-Transition Diagram
. . . Figure 2.5.1: for <disposedFileHandler | fileDisposeRecord
UC005 Iécct,lovol?;fbl?f r;zsn; 5 ;r Sequence Diagram | Controller> File
file> P for UC005 State-Transition Diagram | SAOfficer
<Dispose of file> for <FileDisposedRecord | RUClerk
Class>
Figure 2.6.1: . . .
UC006 Activity Diagram for Sequence Diagram zflz;){)':gzsgiolz I?al Z‘ZZ" borrowFileRecord
UC006 <Borrow file> for UC006 <Borrow Staff
file> Controller>
. . . Figure 2.7.1:
Activity Diagram for Seauence Diaeram State-Transition Diagram | borrowFileRecord
uco07 UC007 <View file o A C007 <taom | for <BorrowedFileRecord | SAOfficer
access record> Class> RUClerk
file access record>
Figure 2.8.1:
Activity Diagram for Sequence Diagram | State-Transition Diagram .
UuCco08 UC008 <Detect the late | for UC008 <Detect | for <BorrowedFileRecord g$§?WF1IeRecord
return of file> the late return of Class>
file>
Figure 2.9.1: . . .
UC009 Activity Diagram for Sequence Diagram zfzkziizﬁzsz‘ilbegfgzz borrowFileRecord
UC009 <Return file> for UC009 <Return Staff

file>

Class>

Remark: Italic text is cross-reference hyperlink.

1. Introduction

The purpose of the RMD created is used in order for us to describe all the requirements elicit from
the file management system in JKSNIJ. This is because we want to create and develop a new file
management system that will be changed from manual system to online system. RMD is best used
for us to document the functional requirements of the system that need to be developed. The
document will specify all the user expectations toward what the software is able to do. In the RMD,
we will use UML Use Case diagram, UC specifications, UML activity diagram, UML domain class
diagram, UML state diagram in order to get a more detailed understanding towards each process in
the system. All the documents related towards the file management system also will be recorded in
the RMD. It is also easy for us to see clearly all the issues and improvements that can be made
towards each process. All the requirements gathered in the RMD are elicited from the stakeholders
of JKSNJ on 11 April 2020. The parties involved for this RMD are all staffs of JKSNJ including the
Clerk of Record Unit (CRU) and Syariah Assistant Officer (SAO).

The software product is Mipanzu Online File Management System to replace the current manual
file management system from JKSNJ. This file management system has the function of keeping
track of the location of the files and records. So, when the user wants to borrow the files, they need
to key in the code of the file. All file access information including the user identity, date and time
of borrowing and returning and file code will be stored online therefore it can replace the physical
version of “Kertas Minit”. Therefore, it is easier for SAO as they can know who borrowed the file
and can keep track of the file location.

All the staff need to log in with passwords to verify their identities. Different groups of staff can
access different types of files according to their security levels. When the staff return files, the
system will record the date and time of return. The staff can also report the loss of file in the system.
The system will automatically notify the officers about the late return of files. The system can also
be used to dispose of files, open new files and close files. When they want to dispose of files, they
need the approval from Arkeb Negara Malaysia (ANM).The system will notify the officers of the
files that shall be disposed of according to Jabatan Pelupusan Record (JPR).

On the other hand, viewing files and store files does not need approval from ANM, instead the
CRU only needs to update the file status in the system. This system brings benefits to all JKSNJ
staffs, CRU and SAO where they can manage the file records and the daily procedures like
borrowing, returning, disposal and classification of files more efficiently. All the file records can be
backup to secure those records and prevent them from missing. Our goal is to produce an online file
management system that provides one-stop services to all JKSNIJ staff with an objective to offer a
path for the users to have an easier work in managing the files and records while maintaining its
integrity.

Page 1 of 37

2. Functional Perspective: Use Case (UC) Documentation (Diagram — UML UCD)

The system features include several diagrams that helps us to create a good to-be system in the
future. There will be several diagrams created and all of them are used to explain all the requirement
and process needed for Mipanzu File Management System. The diagram that will be created are use
case diagram to show interaction between user and all the use case in the system, activity diagram
to documents the action sequences in the use case, domain model to show all the class with their
attributes in the system and state machine diagram to show the state of the class when there is a
trigger that made the state of the class to change if any. For every use case in the use case diagram,
we will create use case description and sequence diagram to see the flow and process for every use

casc.

A

JKSNIJ staff

|

Mipanzu Online File Management System

Uco09
Return file

UcCoo06
Borrow file

ucoo4
Report the loss
of file

UC005
Dispose of

Syariah Assistant
Officer

Clerks of Record \

Unit

file

Uco003
Track file
location

ucoo7
View file access
record

ucoos8
Detect the late
return of file

UcCoo1
Open new file

UC002
Close file

Figure 1: Use Case Diagram for Mipanzu Online File Management System

Page 2 of 37

2.1

Functional Perspective: Use Case (UC) Documentation (Specification — UCS) & UML
Activity Diagram (AD)

Table 2.1 Use Case Specification for UC001 <Open new file>

<ID> <Changes>
1.0 Create initial use case
History Log:
1.1 Fix the normal and alternative flow
1.2 Add information according to requirements management
Version: 1.2
Use Case ID UucCo01
Use Case
Name Open new file
Created by: Lugman Last Updated by: Lugman
Data 14/4/2021 Last Revision Date: 13/6/2021
Created:
e This use case is used by Clerk of the record unit to open new file in Mipanzu
Description . .
Online File Management System.
Actor(s) Clerks of the record unit
Pre- A valid clerk of the record unit is logged on to the system
condition(s) &8 y
1. The clerk of the record unit keys in the file code of the file.
2. The system automatically checks whether the file with the file code
entered exists. [Al]
3. The system displays file does not exist message.
4. The clerk of the record unit keys in the file code, security level of file,
room number and shelf number of file storage space.
Normal 5. The system registers the new file with the file information entered by the
Flow(s)- NF clerk of the record unit.
6. The clerk of the record unit keys in the reference number, title and judge
note of a letter.
7. The system registers the letter in the letter database.
8. The system adds the letter information into the file created in the file
database.
9. The system updates the file database.
Al: File exists already
Alternative 1. The system displays the ﬁle already exist message and the file information.
Flow(s) - AF 2. Clerk of record unit keys in the reference number of the letter.

3. The system checks whether the letter with the reference number entered
exists.

Page 3 of 37

4. If the letter does not exist resume step 6
5. The system display letter already exists and the letter information.
6. The use case ends.

POSt_. . A new file is successfully created by the Clerks of the record unit.
condition(s)
ID Requirement Priority
The system shall follow the Malaysian|
standard for Record Management guideling .
CR UC001-01 or acted by Arkib Negara Malaysia for the Basic

Related file code
Requirement
(5): CR UC001-02 The system shall allow the user to open the Basic

file during the work hour only

The system shall allow the user to open the
CR UCO001-03 [file using any devices such as desktop and Basic
mobile devices

Page 4 of 37

act UC001-Open new File)

Clerk of the record unit Mipanzu System
checks whether the file with File exist 2. [false]
the file code entered exists. i
4
[true]
key in file code
Key in reference number\ (Display the file already exist
of the letter J‘ L message and the file info
‘r checks whether the letter
L entered exists \

r Display file does not exist
message

Letter exist ?

\J

Key in File Code, security
level of the file, room number registers the [True]
and shelf number of file 'l new file
storage space.
[False]
o Display the letter

already exist message
and the letter info

keys in the reference
number, title and
judge note of a letter.

registers the
letter in the letter

database

adds the letter info into

the file created in the file
database

A\

updates the |

file database.

Figure 2.1: Activity Diagram for UC001 <Open new file>

Page 5 of 37

Bound i <<Data Access>> <<Controller>>
<<Boundary>> <<Controller>> <<Entity>> -fileDA letterRequestController <<Data Access>> <<Entity>> <<Data Access>>
:OpenFilelnterface fileRequestController file leuerDA ‘borrowedFileStatus :FileAccessDA
Clerks of the record unit
| | ! i ! 1 |
L selectservice() I | I | i i |
searchFile(filecode) I | : I | | :
|
| | | | | | |
findFiledata(filecode) — | |
: searchFileData(filecode) : | | :
Alternative | K — — — — — — — | T T |
- 4ttt e __ _ ___ fileNotExist | |
[FileNotExist]] TileNotExist l | | l
E fileNotExist | |
registerFile(filefode, hecurityL evel,roomNo, shelfNo) | | : : |
registerFile(filecode, sedurityLevel,raomNo, sheltNo : : | | |
|
fnitFile(filecode, securityLevel,raomio, shelfNo) | | | | |
| | | —
createFile(aFile) 'J_] | |
| | reateBorr or
| L
_____ _ s |y g
[Else] | | |
| <<Entity>> |
aFile:retrieveFileInfo() aLetter:Letter | I
——— — — — — displayFilelnfo() | |
fileInfo — checkLetter(refNo) () |
f checketter(refNo) (™) checkdetter(refNo)
|
| <]
[LetterExist] I

[Else]

noLetter

=

-
|
|
|
|
|

— | | : L |
[updateLetter(refNo, titfe, note) 1 : : : T i : |
7 | |
/ | fegisterLetter(refNo, title, note,filecode) | — | | |
/ | | | A | |
/ | | | t|_etter(refNo, title, note) |

/ | | | createLetter(refNo, title, note)
/ | | | getLetterInfo() l
/ | | aLetter:getLetterInfo()| |
Letter Database is updated |
N I it S oo |
/ | aLetter:getNewLetter() | |

/

/ € e e updateFilelnfo(aLetter) updateFileInfo(aLetter) I |
LetteySuccesstully Added etter Successfully Added [] —fl : |
— === I

/ J | | |] | 1
/ 1
/

J Letter exists already

/

O

Figure 2.1.1: Sequence Diagram for UC001 <Open new file>

Page 6 of 37

Table 2.2 Use Case Specification for UC002 <Close file>

<ID> <Changes>
1.0 Create initial use case
History Log:
1.1 Fix the normal and alternative flow
1.2)Add information according to requirements management
Version: 1.2
Use Case ID ucCo02
LLD(E Close file
Name
Created by: Husny Last Updated by: Husny
Data 14/4/2021 Last Revision Date: 13/6/2021
Created:
Description This use case is used by Clerk of the record unit to close file in Mipanzu
P Online File Management System.
Actor(s) Clerks of the record unit
s A valid clerk of the record unit is logged on to the system
condition(s) £e Y '
1. The clerk of record unit keys in the file code of the file.
2. The system automatically checks whether the file with the file code entered
exists.
3. If the file does not exist, Exception E1 is performed.
4. The system displays file exists message.
5. The clerk of the record unit clicks on the close file button.
Normal 6. The system updates the file status to “Closed” in the file database.
Flow(s)- NF 7. The system automatically registers a new file with the same file info as the
original closed file in the file database.
The system sets the subsequent file code to the new file.
. The system displays the new file code.
10. The clerk of the record unit clicks on delete file to delete the original file
info. [A1]
11. The system deletes the original file info from the file database.
Post- o .
. File is successfully closed by the clerk of the record unit
condition(s)
Alternative [A1: The clerk of the record unit doesn’t click on delete file button]
Flow(s) - AF 1. The use case ends.
Post- o .
. File is successfully closed by the clerk of the record unit
condition(s)

Page 7 of 37

E1: File does not exist

Exception
Flow(s) - EF 1. The system displays an error message.
2. The use case ends.
ID Requirement Priority
Related
Requirement The system shall register a new file
(s): FR UC002-01 with the same file info as the original] Basic

closed file in the file database.

Page 8 of 37

act UC002-Close File)

Clerk of the record unit

Mipanzu System

. o)
key in file

checks whether the
file exists

File Exist?

<\ [False]
/

[True]

A

code

)
click "Close"

-~/

message

L

(displays file exists

—
displays file not
exists message

~—

(updates the file

T Lstatus to "Closed"

displays the
new file code

click?

No

—

registers new file

with same file info
_/

Y

sets the subsequent file
code to the new file

J

Y

deletes the)

original file infoj

-

@—

Figure 2.2: Activity Diagram for UC002 <Close file>

Page 9 of 37

<<Boundary>> <<Controller>> <<Entity>> <<DataAccess>>
:CloseFileInterface sfileRequestController :File :FileDA
RUClerk
. T
1 | 1 l
I | | I I
i I | | |
§ | | | |
selectService() - | |
searchFile(flecode) | | I
findFiledata(filecode) ——
searchFiledata(filecode)
Alternative ¥
— 1 K — == — —
[FileExist] K- — — — — — - file exists
e - — ——] file exists
< fille exists
€ exists L | | I
| | |
closeFile(filecode) ’__| | | |
loseFile(filecod
closeFile(filecode) |
|
| closeFile(filecode) —
~=
L L
fnitfile(filecode, securityLevel,robmNo, shelfNo) :
createFile(aFile) —
code:getFileCode() new filecode
<— ———— Sewfilecode] <= e fiecode ™ T] L T
Alternative | | !
deleteFileInfofilecode) | | |
[File no use] — |
deleteFileInfo(filecode) | |
deleteFileInfo(filecode) ~ ——
s [~ hieDeiered ™
- - — - — — — T TfileDeleted |
fileDeleted
— = —
| | |
,,,,,,, = — o
[Else] | | al
| |
| | |
| | |
| | |
Mmetea1 . — - = |______________________| _______
[Else]

file not exist

file not exist

file not exist

file not exist

Figure 2.2.1: Sequence Diagram for UC002 <Close file>

Page 10 of 37

Table 2.3 Use Case Specification for UC003 <Track file location>

<ID> <Changes>
1.0 Create initial use case
History Log:
1.1 Fix the normal and exception flow
1.2)Add information according to requirements management
Version: 1.2
Use Case ID UucCo03
Use Case Name | Track file location
Created by: Lugman Last Updated by: Lugman
Data Created: 14/4/2021 Last Revision Date: 13/6/2021
Description This use case is used by Clerk of the record unit to track file location in
P Mipanzu Online File Management System.
Actor(s) Clerks of the record unit

Pre-condition(s)

A valid clerk of the record unit is logged on to the system.

1. The clerk of record unit keys in the file code of the file.
2. The system automatically checks whether the file with the file code
entered exists.

Normal 3. If the file does not exist, Exception E1 is performed.
Flow(s)- NF 4. The system displays file exists message.
5. The clerk of the record unit clicks on the search file button.
6. The system displays the location of the file (room number and shelf
number).
E1: File does not exist
Exception
Flow(s) - EF 1. The system displays an error message.
2. The use case ends.
Post- .
.- The file location is successfully tracked.
condition(s)
ID Requirement Priority
CR UC003-01 The 'system shgll track 100 files Basic
location at one time.
Related
Requirement(s): The location of the file displayed in|
the system must be match with the .
CR UC003-02 exact location of the file in the room| Basic
number and shelf number

Page 11 of 37

act UC003-Track File Location)

Clerk of the record unit

Mipanzu System

checks whether the
file exists

A

. 1)
key in file
code

(1 oo 1)
click "Search

File"
~—

(displays file exists
L message

(displays the 1

File Exist?

Y

[False]

[True]

A

displays file not
exists message

=L location of file J

 J

Figure 2.3: Activity Diagram for UC003 <Track file location>

<<Boundary>> <<Boundary>> <<Controller>> <<Entity>> <<dataaccess>>
:FileHandlingInterface :FileInterface -fileRequestController| :File :FileDA
Clerk of the record unit

selectService()

findFilelnfo()
requestFile(filecode)
findFiledata(filecode)

searchFiledata(filecode)

Alternative

file exists
trackFileLocation(filecode)

file exists

displayFileLocation()

(tjoom, shelf):getFileLocation(

file Not Exist

file Not Exist

T 7 Thleeists |
T 7 Filelocation |

= — — —
T 7 fileNotExist |

—
I
|
|
|
I

Figure 2.3.1: Sequence Diagram for UC003 <Track file location>

Page 12 of 37

Table 2.4 Use Case Specification for UC004 <Report the loss of file>

<ID> <Changes>

1.0 Create initial use case
History Log:

1.1 Fix the normal and exception flow

1.2 Add information according to requirements management
Version: 1.2
Use Case ID UcCo004

Use Case Name

Report the loss of file

Created by: Husny Last Updated by: Husny
Data Created: 14/4/2021 | Last Revision Date: 13/6/2021
Description This use case is used by Clerk of the record unit and JKSNJ staff to
P report the loss of file in Mipanzu Online File Management System.
Clerk of record unit
Actor(s) Syariah Assistant Officer

JKSNIJ staff

Pre-condition(s)

A valid clerk of the record unit is logged on to the system.

Normal Flow(s)-
NF

1.The JKSNI staff keys in the file code.

2.The system automatically checks whether the borrow record with the

staff’s ID and the file code entered exists.

3.If the borrow record does not exist, Exception E1 is performed.

4.The system displays borrow record found message.
5.The JKSNI staff clicks on the report file lost button.

6.The system updates the borrow status as lost in the file access database.

7.The system updates the file status as lost in the file database.

8.The system sends notification to Syariah Assistant Officer and the clerk
of Record Unit about the file lost with the file code and the info of staff

who lost the file.

Exception Flow(s)
- EF

E1: File does not exist

1. The system displays an error message.
2. The use case ends.

Post-condition(s)

The loss of file is successfully reported.

Related
Requirement(s):

ID Requirement Priority
FR The system shall send notification to Syariah
UC004-01 Assistant Officer and the clerk of Record Basic

\Unit about the file lost information.

Page 13 of 37

act UC004-Report the Loss of File)

JKSNIJ Staff

Mipanzu System

checks whether the
borrow record exists

record exist?

Y

)
key in file

A [False]

[True]

code

Y

displays file not

T\
click "Report |

File Loss"
—

(displays borrow
Lrecord found message

exists message

\

Y Y

updates the
borrow status
as lost

updates the file
status as lost

l l

sends notification to Syariah
Assistant Officer and the
clerk of Record Unit

-@

Figure 2.4: Activity Diagram for UC004 <Report the loss of file>

Page 14 of 37

<<Boundary>> <<Boundary>> <<controller>> <<ty <<Entin> <<Data Access>> <<Data Access>> —ccomolters <<Data Access>>
JKSNJ Staff :ReportInterface :fileRequestController| :File orrowFileRecord :FileDA il i istaffDA
: : ; | | : :
| | | | RUClerk
! ! } } I | : Saofticer
L easavic
I I I I I
eponosFile) o | - I
checkBormonRecord(safiD, icode)
checkBBorrowRecord(saffD, filkode) !
b filkcode)
| T
X
- :

Alternatije

[Borfow frecord found]

oo neeratoma_ | €~ ——— = T

reportLost(staffID, filecode)

updateBorrowstatus(filecode)

setBorrowStatus(filecode)

|
|
reportLost(staffID, filecode) |
|
I

setFileStatus("Lost")

I

|

|

|

| updateFileStatus(filecod
|

|

| ataff:getstaffInfo(staffID)
'

notifyFileLost(filecode, staff)

notifyFileLost(filecode, staff)

[TElsq) | |
T T T T T T T Ba winc;d?m?mmiﬂ
o i

Borrow Record Not Found

Borrow Record Not Found

Borrow Record Not Found L

|

<= = = =~ BovewRecordNetFound — T 1 e 1
| ; I I

I |

| I

Figure 2.4.1: Sequence Diagram for UC004 <Report the loss of file>

Page 15 of 37

Table 2.5 Use Case Specification for UC005 <Dispose of file>

<ID> <Changes>
1.0 Create initial use case
History Log:
1.1 Fix the normal, exception and alternative flow
1.2)Add information according to requirements management
Version: 1.2
Use Case ID UcCo05
Use Case Name | Dispose of file
Created by: Tan Chiaw Last Updated by: Tan Chiaw Torng
Torng
Data Created: 14/4/2021 Last Revision Date: 13/6/2021

Description

This use case is used by Clerk of the record unit and the Syariah Assistant
Officer to dispose file in Mipanzu Online File Management System.

Actor(s)

Clerk of record unit
Syariah Assistant Officer

Pre-condition(s)

A valid clerk of the record unit and a Syariah Assistant Officer are logged on
to the system.

The clerk of the record unit and the Syariah Assistant Officer select “File
Disposal” in the home page.

Normal Flow(s)-
NF

1. The clerk of record unit clicks on “Outdated Files”.

2. System displays and loads the files that exceed the maximum storage time.
3. The clerk of the record unit enters the file codes of other damaged files to
be disposed of and clicks on Search.

4. The system checks whether the file code exists in the system.

5. If the file code does not exist, Al is performed.

6. The system displays a “File is found!” message.

7. The clerk of the record unit clicks the add button to add file to the list of
files to be disposed of.

8. The clerk of the record unit clicks on Submit to send the file dispose list
through the system to Syariah Assistant Officer.

9.System displays “Submitted Successfully!” and sends the file dispose list to
Syariah Assistant Officer.

10. Syariah Assistant Officer views the file dispose list and updates the
thickness of files from the file dispose list.

11. Syariah Assistant Officer clicks on “Download Disposal Forms™.

12. The system checks whether the thickness of all files is entered.
13. If the thickness of files is not fully filled in, A2 is performed.
14. System updates the file thickness in database.

Page 16 of 37

15. System generates File Disposal Application Forms filled in with the details
of each file in the file disposal list and are downloaded by Syariah Assistant
Officer in zip file.

16. Syariah Assistant Officer clicks on “Email” which links to the Outlook
mailbox to apply for the file disposal with Arkib Negara Malaysia.

17. Syariah Assistant Officer returns to the Mipanzu system.

18. Syariah Assistant Officer clicks on Add to Disposal Record.

19. System updates the disposed file record and the result page with the files
from the file disposal list.

20. System displays “Added Successfully!”.

21. After receiving email of file disposal list with approval status and disposal
method from Arkib Negara Malaysia, Syariah Assistant Officer clicks on
“Result” to update the application status and disposal method.

22. If the application of file disposal is rejected, Exception E1 is performed.
23. Syariah Assistant Officer selects the file dispose status as “Approved”.
24. Syariah Assistant Officer selects the file disposal method.

25. Syariah Assistant Officer clicks on “update”.

26. System displays “Updated Successfully”.

27. System updates the file disposal status and disposal method.

28. The clerk of the record unit clicks on “Approved list”.

29. The clerk of the record unit views the list of files with approved file
disposed status.

30. The clerk of the record unit selects the file disposal date.

31. The clerk of record unit selects the file dispose status as “Disposed”.

32. The clerk of record unit clicks on “Update”.

33. System displays “Updated Successfully”.

34. System updates the file disposal date and status as “Disposed”.

Al: The file code entered is not found

1. The system displays an error message
Alternative 2. Step 3 resumes.

TR A2: The thickness of all files is not fully filled in
1. The system displays an error message.

2. Step 10 resumes.

E1: The application of file disposal is rejected

Exception 1.

Syariah Assistant Officer updates the file dispose status as “Rejected”.
Flow(s) - EF

2. System updates the file dispose status.
3. The use case ends.

Post- o .
condition(s) File is successfully disposed.
ID Requirement Priority
Related The system shall provide the clerk of the
Requirement(s): | TR UC005- record unit with the ability to view outdated Basic
01 files which are sorted according to Record
Disposal Schedule.

Page 17 of 37

FR UC005-
02

The system shall provide Syariah Assistant
Officer with the ability to download the file
disposal application forms for the files in the
latest file disposal list with the details of files
filled in automatically by the system based on
the format of Archive Form 5/08 and Archive
Form 2/08ada from Arkib Negara Malaysia..

Basic

Page 18 of 37

acl UCD05-Dispose of File

Clerk of Record Unit

Mipanzu System

Syariah Assistant Officer

?

click "Show Outdated Files”

Display and load files which
exceeds max storage time

I

enter filecode of other damaged
files to be dispased of and click
"Search”

add file 10 the file
disposed list

Check if the filecode entered
exisis

Display File not
found False-

True

Display File is found

display "Submilted Successtully and
send File Disposed List 1o Syariah

Clicks om appraved list to,
w the list of files with
"approved” file dispose status

view file dispuse list

Assistant Officer

enter [ile thickness

All file

displays error message
thickess is fully

measured

¥

click on Download
Disposal Forms

[illed?

Teue
L]

update File Thickness

generale file disposal
applicalon (orms with the lile
delails sulomatically filled in

and are dowuloaded by Syarials
Assistant Officer

ke email

Tink to ourlaok mailbox

updaces de dispose file
record and result page with

|

apply for file disposal to Arkib
Negara Malaysia through email ||

return to the Mipanzu system

click "Add

the files from disposed list

display added

disposal record” for
selected files in the
given file disposal list

receive email with file

suceessfully

Update file dispose status ‘

displays Updated
and disposal method. .

approval status and dispose
method from Arkib Negara

Malaysia
Lake——
Towe
L]
tinter file dispose Linter file dispose stams -
status - "approved” “nejected”

!

Fneer disposal
method

Clicks on update

Farer file dispose date

Enter [ile dispose staus
~disposed”

Updae File Disposal dale

Update File dispose stamms

click on updale

display updaled successlully

O

Figure 2.5: Activity Diagram for UC005 <Dispose of file>

Page 19 of 37

<<Boundary>> <<Controller>> <<DataAccess>> <<Entity>> <<DataAccess>>
isposeFi jsposeFi leDA iDisposeFileRecord iEileDisposalDA
T T
Clenk 1 Rkcodt Uit T T T § Atkib Negara Malaysia
o i . Syariah Assistant Officer | A
A | —
sletservived —
ilesiisplay OutdtedFile)
e displayOutdatedrilen
enterDamagedFileCode ToBeDisposed(f Suration:checkStoragiTume(iie)
cearcFileData(cod)
Alternative file code is found
!] e cadots ound e = -
[File code is founl] e code s faund € — —="—="=— —
[Else]
sendDisposeL (e
Toop
— T
[Thickness not confplefely filled] apdneticness(hicncss) » ke
seThicknes(bicknes)
applyFileDisposalites)
hicknesstally Filled)
applyleDisposaliles N
addDisposedieRecordies)
addDispasedFileRecord(fies)
addDisposeFieRecord(ies
addrilegies
Aliermatje —
ToBeDifposkd]
updacApproveStacus(ile,mehod)
o
Approved:
il viewFileApprovedTopeDisposed
files:viewFilesNeedDisposal()
esiiewFilesNewdDisposal)
updateDisposedDateies, date
updateDisposedDot(
(e, dat)
seisposedbatedate)
updateDispoedstanusie)
updaeDisposedstatusile)
updateDisposedStatusifile)
Dispasd”
updateilstatus(ilecode, “Disposed)
seFistatsg
[Else] updateRejectStatusi(ile)
apdteReied
P
Rejected
. g T U i

Figure 2.5.1: Sequence Diagram for UC005 <Dispose of file>

Page 20 of 37

Table 2.6 Use Case Specification for UC006 <Borrow file>

<ID> <Changes>
History Log: 1.0 Create initial use case
1.1)Add information according to requirements management
Version: 1.1
Use Case ID UCo006
Use Case Name Borrow file
Created by: See Wen Xiang | Last Updated by: See Wen Xiang
Data Created: 14/4/2021 Last Revision Date: 13/6/2021
Tegarfar This use case is gsed by J KSNJ gtaff to borrow file from Clerk of the
record unit in Mipanzu Online File Management System.
Actor(s) Clerk of record unit

JKSNIJ staff

Pre-condition(s)

A valid JKSNJ staff is logged on to the system.

Normal Flow(s)-
NF

1.

(98]

e

8.

10.
11.
12.

The JKSNIJ staff keys in the file code.

The system automatically checks whether the file with the file code
entered exists.

If the file does not exist, Exception E1 is performed.

The system automatically checks whether the file with the file code
entered is still available (not borrowed).

If the file is not available, Exception E2 is performed.

The system automatically checks whether the staff has the privilege to
borrow the file.

If the staff does not have the privilege to borrow the file, Exception E3
is performed.

The system creates a borrow ID.

The system updates the file access database.

The system shows the borrow ID to the staff on the borrow file
interface.

The clerk of the record unit keys in the borrow ID.

The system displays the borrow record.

Exception
Flow(s) - EF

E1: File does not exist

l.
2.

The system displays File not found message.
The use case ends.

E2: File is not available

l.
2.
3.

The system displays the last borrower’s name and staft ID.
The system displays File is not available message.
The use case ends.

E3: The staff does not have the privilege to borrow the file

1.

The system displays message No right to borrow the file.

Page 21 of 37

2. The use case ends.

Post-condition(s)

File is successfully borrowed by the JKSNJ staff.

Related
Requirement(s):

ID

Requirement

Priority

CR UCO006-01

The system shall allow the JKSNJ
staff to borrow a maximum of 5 files.

Basic

Page 22 of 37

act UC006-Borrow File

JKSNIJ Staff

Mipanzu System

Clerk of Record Unit

Key in file code

—

checks whether the file with
the file code entered exists

No

Checks whether the file
availability with the file code

Displays File not found
message

Displays the last borrower’s
name and staff ID

!

Displays File is not available
message

Available?

Displays message No right to
borrow the file

checks whether the staff has
the privilege to borrow the file

Has
Privilege?

Creates a borrow ID

i

Updates the file access
database

Shows the borrow ID to the
staff on the borrow file

interface.

Displays the borrow record

Keys in the borrow ID

Figure 2.6: Activity Diagram for UC006 <Borrow file>

Page 23 of 37

selectService()

[e&!a]BorrowerInfo

< —

Borrow ID

[e] getBorrowStatus(fileCode)

[e&!a] getBorrowerName()

[e&!a] getBorrowerID()

searchFileData(filecode)

<<Controller>> <<Controller>> <<Entity>> <<DataAccess>> <<Data Access>> <<Entity>>
:BorrowFil :Credenti Staff :StaffDA :FileAccessDA File
T T T T T
I
‘ | | | | ! \
! \ \ \ ‘ ‘
— Clerk of rkcord unit | | | | | |
| ! \ \ ‘ \ !
borrowFile(fileCode) | |
i taff:getLogi il() — I |
| getLoginDetail()) | |
| K- — — — name:getStaffName() I I
| == =g — e — seffd] ‘getFileAccessPriviledge() } }
_______ staffName
| staffName K= — = — — — |
fileAccessPriviledge |
| Koo = = = — — |)
| TfileAccessPriviledge
| e de) |
— I
_____ fela: ched A

Feécatiip] no right to borraw

)
|
|
|
I
|
I
|
|
|
|
I
|
|

-
|
|
|
I
|
|

readBorrowlnfo(borrowlD)
|
|
I
|
|
|
|
|
|
|
I
|
I

|
| <e—————- T T loorrower ~ T T ittt -
[e&!a] displayBorrowerInfo(filgcode) ‘ | |
— \ | \
\ : \ } ‘
4 |
| [e&a]p: ch:ckPriviIedgeﬂslaﬁ, fileCode) | | i
Il ——— | —
- = - .
(, [Ipino right to bnnfnw file borrowID:bor i staffID, | 1
[P [‘ \ saffD,
i displayBorrowID() | | |
b } |
| |
T \ \
viewBorrowInfo(borrowID)| | |
\ \
\ \
viewBorrowInfo(borrowID) ‘ ‘
readBofrowInfo(borrowlD) |
[[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

Figure 2.6.1: Sequence Diagram for UC006 <Borrow file>

Page 24 of 37

Table 2.7 Use Case Specification for UC007 <View file access record>

<ID> <Changes>

1.0 Create initial use case
History Log:

1.1 Fix the normal and exception flow

1.2)Add information according to requirements management
Version: 1.2
Use Case ID ucCoo7
Use Case Name | View file access record
Created by: Tan Chiaw Torng | Last Updated by: Tan Chiaw Torng
Data Created: 14/4/2021 Last Revision Date: 13/6/2021
Description This use case is used by Clerk of the record unit t view file access record in

P Mipanzu Online File Management System.

Actor(s) Clerk of record unit

Pre-condition(s)

A valid Clerk of record unit is logged on to the system.

1. The clerk of record unit keys in the file code of the file.
2. The system automatically checks whether the file with the file code

Normal entered exists
Flow(s)- NF XISTS:
ow(s) 3. Ifthe file does not exist, Exception E1 is performed.
4. The system displays the file access record.
E1: File does not exist
Exception
Flow(s) - EF The system displays an error message.
The use case ends.
Post-
. File access record is successfully viewed by Clerk of the record unit
condition(s)
ID Requirement Priority
The system shall display the file
Related access record including the name of
Requirement(s): | Fr UC007-01 the last borrower and datetime of Basic

borrow and return when the clerk of|
record unit entered a valid file code
by keyboard of the terminal.

Page 25 of 37

act UC007-View File Access Record)

Clerk of Record Unit

Mipanzu System

Enter filecode

Check whether the borrow file

record exists

'

Yes

Y

Display File
Access Record

Display File
Record Not Found

-@®

Figure 2.7: Activity Diagram for UC007 <View file access record>

<<Boundary>> <<Boundary>> <<Controller>> <<Entity>> <<dataaccess>>
:FileHandlingInterface :ViewFileAccessInterface fileAccessControlle :borrowFileRecord :fileAccessDA
RUClerk
| | | 1 | |
| | | | | |
| selectService() | : : : :
viewFileAccess() | | |
| searchFile(filecode) | |
| searchFile(filecode) |
| | | searchFile(filecode)
I | [I
Alternative [I d ileBorrowRecord(filecod | . .
- - | | | recdrd: getFileBorrowRecord(filecode)|
[FileExidt | | >
|
| deplayF ileAccessRecord(recbed)| (—
- [—— | | |
FileAccessRecord
R 4 L b l_]
[Else] | [| | —
| | | < file Not Exist
I [] e —
: < file Not Exist |
| < hieworime |
== T T T T T Thewemw] |
|
|
|
I
|

Figure 2.7.1: Sequence Diagram for UC007 <View file access record>

Page 26 of 37

Table 2.8 Use Case Specification for UC(008 <Detect the late return of file>

<ID> <Changes>
History Log: 1.0 Create initial use case

1.1)Add information according to requirements management
Version: 1.1
Use Case ID UCo008
LLD(E Detect the late return of file
Name
Created by: Lugman Last Updated by: Lugman
Data 14/4/2021 Last Revision Date: 13/6/2021
Created:
Description This use case is used by Clerk of the record unit to detect the late return of file

P by JJKSNI staff in Mipanzu Online File Management System.

JKSNJ staff
Actor(s) Clerk of the record unit
Pre- A valid Clerk of record unit is logged on to the system
condition(s) &8 y ’

1. The clerk of the record unit clicks on the View File Late Return button.
Normal 2. The system displays the list of files that exceeds the return deadline with
Flow(s)- NF their file access record.

3. The system notifies the last borrower of the files in the late return file list.
Post- 1. The list of files that exceed the deadline of return is successfully viewed.
condition(s) 2. The return file notification is successfully sent to the last borrowers.

ID Requirement Priority

Related
Requirement The system shall notify the user
(s): CR UC008-01 |about late return of file after 1 hours Basic

the user exceeds the return deadline.

Page 27 of 37

act UC008-Detect the late return of file)

Clerk of the record

. Mipanzu System
unit P y

displays the list of files that
—»| exceeds the return deadline
with their file access record

clicks on the
View File Y

Late Return
button

notifies the last borrower of
the files in the late return file
list.

'
®

Figure 2.8: Activity Diagram for UC008 <Detect the late return of file>

<<Boundary>> <<Boundary>> <<Controller>> <<Entity>> <<DataAccess>>
:FileHandlingInterface :ViewFileAccessInterface :fileAccessController :borrowFileRecord :fileAccessDA

RUClerk

JKSNIJ staff

selectService()
viewFileAccess()

1
|
|
I
‘ |
| displayLateReturnLlist() — ——
|
| records:getFilesLateReturn()
|
|

I

|

|

|

|

|
records:findLateReturnFiles() —L—

lisplayFileAccessRecord(recotd

K —— — — — — — L notifyLastBorrower()

file access record

notifyLastBorrower(Staff staff)

T -
| |
| |
| |

Figure 2.8.1: Sequence Diagram for UC008 <Detect the late return of file>

Page 28 of 37

Table 2.9 Use Case Specification for UC009 <Return file>

<ID> <Changes>
1.0 Create initial use case
History Log:
1.1 Fix the normal and exception flow
1.2)Add information according to requirements management
Version: 1.2
Use Case ID uco09
Use Case Name | Return file
Created by: See Wen Xiang | Last Updated by: See Wen Xiang
Data Created: 14/4/2021 Last Revision Date: 13/6/2021
o e This use case is used by JKSNIJ staff to return file to Clerk of the record
Description . . : .
unit in Mipanzu Online File Management System.
Actor(s) JKSNIJ staff

Clerk of the record unit

1. A JKSNI staff is taking the file that they borrowed to the counter of

Pre-condition(s) JKSNIJ.
2. A valid clerk of the record unit is logged on to the system.
1. The clerk of the record unit keys in the borrow ID.
2. The system automatically checks whether the borrow record with the
Normal borrow ID entered exists.
Flow(s)- NF 3. If the borrow record does not exist, Exception E1 is performed.
4. The system displays the file borrow info.
5. The clerk of the record unit clicks on the Return File button.
6. The system updates the borrow status in the file access database.
E1: Borrow Record does not exist
Exception
Flow(s) - EF 1. The system displays an error message.
2. The use case ends.
POSt_. . File is successfully returned from the JKSNJ staff
condition(s)
ID Requirement Priority
Related :
Requirement(s): | FR UC009-01 The. sy§te‘f11 shall display an error message Basic
which is “Borrow Record does not exist”.

Page 29 of 37

act UC009-Return File

Clerk of the record unit

Mipanzu System

Key in Borrow ID

checks whether the borrow
record with the borrow ID
entered exists

Borrow
ID Exist?

|

Clicks on the Return File

Displays an error message.

Figure 2.9.1: Sequence Diagram for UC009 <Return file>

- Displays the file borrow info
button play:
Updates the borrow status in
the file access database
A
. o e .
Figure 2.9: Activity Diagram for UC009 <Return file>
<<Boundary>> - <<Data Access>>
" <<Controller>> <<Entity>> "
:returnFilelnterf: " y fileA DA
Aretumbielnterlace :returnFileHandler :borrowedFileRecord AreAccessDA
I 1
I I
| | !
RUClerk | I |
I | I
— 1 o |
selectService()
checkBorrowRecord(borrowlID)
o checkBorrowRecord(borrowID)
1
checkBorrowRecord(borrowlID)
Alternatiye <
borrow record found " borrow record found |
[Borrow Recdrd fpund] <{—— — — — — — —
getBorrowlnfo()
> getBorrowlInfo()
-
getBorrowlInfo()
>
] <= i]
borrow info
< < T T T T T]
borrow info
returnFile() returnFile(borrowID)
ﬁ ateBorr rowlD, "available"’
| pd rowlD, 1 "D
_____ G
[Else]) M)
<_ o “Borrow record not found |
< ————————————— Borrow record not found
______ Borrow record not found
arraw record not found —I—i o et St
1 I 1 |

Page 30 of 37

3. Data Perspective: UML Domain Class Diagram (DCD)

For UML Domain Class Diagram, there are several entities that need to be created in the
system which are Staff, File, borrowedFileRecord, file DisposedRecord and Letter. They are also
two entity that will inherit the staff attributes which are the SAOfficer and RUClerk which is a more
specific position that have their own unique attributes. For relationship, one staff may borrow and
return one or many Files. At the same time, one Staff Administrator Officer (SAOfficer) may
examine and monitor one or many borrowedFileRecord and fileDisposedRecord. Other than that,
one Clerks of the record unit also can open and close one and many Files. File has a composition
relationship with Letter which means that the Letter cannot exist if there are no File. One or many
Files may contain one Letter. File also has an aggregation relationship with borrowedFileRecord
therefore one or many Files will have one or many borrowedFileRecord. Meanwhile,
fileDisposedRecord has an aggregation relationship with file so one or many fileDisposedRecord
will has and list out one or many Files. The aggregation relationship means that the
borrowedFileRecord belongs to File while File belongs to fileDisposedRecord.

Staff File
staffName: String borrow B fileCode: String
Sfﬂﬁ_ldi String o roomNum: Int
staffPassword:String shelfNum: Tnt <>
fileAccessPriviledge: String return B fileStatus:String 1...%
mlerfmng securityLevel:String o contain
E.ﬂldl -.szfll‘lg k] 1 storageTime: Time
contactNo:String open P» thickness:double '
noOfDoc:int
Mandatory, Or dateCreated: Date
{ y,0r} close @ | dateClosed:Date
branch:String
Ll 1 * sl
- " Lot Letter
SAOfficer RUClerk
*
- s refNoint
SADId: String RUId: $tring joti ‘ title:String
1 1 1 1 1 1 listOut dateEntered: Date
istOul i
access JudgeNole:String
. g v borrowedFileRecord 1osa*
examine | monitor
' ' (I borrowID:String
borrowersName: string fileDisposedRecord
borrowerID: string
fileCode: string fileCode:String
timeBorrowed: Datetime disposedStatus:String
* timeReturned:Datetime disposedDate: Date
1... borrowStatus: String disposedMethod:String

Figure 3.0: Domain Class Diagram for Mipanzu Online File Management System

Page 31 of 37

4. Behavioral Perspective: UML State-Transition Diagram (STD)

For UML State-Transition Diagram, there are several entities class that is created for state-
transition diagram which are File, borrowedFileRecord, file DisposedRecord. Not only that, there
are two controller class that have been created as well which is disposeFileHandler and
borrowFileHandler. These classes are chosen because each of these entities have their own states
and will change between states when they are triggered.

initFile(filecode, securityT evel, roomNo, shelfNo)[FileNot Exist|/CreateFile

initFile(filecode, securityLevel, raomNu, shelfNo)[ExtendFileSeries)/CreateFilc
ow

Ni
—

[isAvailable]

LetterAdded

Pending

setFileStatus(" Lost ")[FileLostReported] UpdateLostFileStatus closeFile{filecade)/updateClosedFileStatus

updateThickness(thickness)/SetThickness

r

| Lost l ThicknessUpdated w

deleteFilelnfo(filecode)[FileNoUse]/DeleteFile

.

y

I Pending Deleted

updateFileStatus(filecode, " Disposed) [isDisposed|iupdateDisposedFileStatus

Disposed

®

Figure 4.1: State-Transition Diagram for <File Class>

Figure 4.1 shows the state transition diagram for file class. A new file will be created first in
the system. Then, the new state will change into letter added state as every file need to include a
letter. Then, the file class will change the state into pending as they will be three different state that
can happen to the file class based on the arguments and condition. The first condition is when the
file status is lost. This will make the file class to change into lost and the state transition will end
there. The second condition is when the file need to be disposed. First, the file state will change into
thickness updated as we need to update the thickness of the file. Then, the file will change it state
into pending as file class need to make sure that the file fulfills the condition to be disposed. Lastly,
the file class will change its state into disposed and the state transition end there. The third condition
made the file class to change its current state into closed. Then, the state will change either to a new
file or deleted. The state change into a new file as the file that is closed will be used to attach to a
new file created. For deleted, the file will be in the deleted state and the state transition end here.

Page 32 of 37

createBorrowedFileRecord(filecode)|isFileCreated)/addBorrowedFileRecord

New

[isAvailable]

—
»| Available

| S —
\
) —
Pending
|

borrowFile(filecode, staffID, staffName)[isBorrowed]/updateBorrowedFileRecord

[lisAvailable]

| Pending |

updateBorrowStatus(borrowID, "Available ")[isReturned /updateBorrowedStatus

updateBorrowStatus(filecode)|[fileLostReported]/setLostStatus

.

Figure 4.2: State-Transition Diagram for <BorrowedFileRecord Class>

Figure 4.2 shows the state-transition diagram for BorrowedFileRecord class. A new record
will be created first in the system. Then, the new state will change into available state. It will be in
pending state before it will be borrowed. After that, the state will change to borrowed state once it
is borrowed. The state will be pending again when it is borrowed before returning it. If the borrow
file is lost, the state will change to lost state and the state-transition diagram ends here.

Page 33 of 37

addDisposeFileRecord(liles)isDisposalApplied)’ createDisposeFileRecord

=

y

lateApy 5 hod)[isDisposal Approved]setApprovedStatus
updateRejeciedStatus{file)] lisDisposal Approved]seiRejecied Status

Rejected Approved

Iﬁ

setDisposalMethod{method)[isDisposal Aprroved]/setDisposeMthod

MethodUpdated

Pending

{} Df

updateDisposedDate(file, date)[isDisposedsetDisposedDate

DisposedDateUpdated

dateDisp tusi{file)[isDisp D

[Disposed]

L
n
]
>
-
L

=©=
Figure 4.3: State-Transition Diagram for <FileDisposedRecord Class>

For Figure 4.3, a new FileDisposedRecord Class will be created when we add the dispose
file record in the system. This made the state of the class to change into new. Then, the state will be
change into pending as the FileDisposedRecord Class need to make sure that it can be disposed.
After that, the FileDisposedRecord Class will be in two different state which is rejected that means
the disposed file is rejected and approved that means the file is approved to be disposed. For rejected,
the state transition end there meanwhile for approved the state then will change into methodUpdated.
It will update the method and the state will change into pending to make sure the file can be disposed.
Next, the state will change into DisposalDateUpdated to set the date of the file to be disposed and
display the disposed date. Lastly, the state will change into disposed by update the disposed status
and the state transition end here.

Page 34 of 37

displayOutdatedFile()[isLoggedOn]/Display Outdated Files

-
DisplayOutDatedFiles J

.

submitDisposalList()/SendFileListtoSyariahAssi: Officer
\J

p
SubmitFileDisposalList

L

—

updateThickness(thickness)[isDisposalListReceived]/SetThickness
\J

UpdateThickness

e N
-~/

applyFileDisposal(files)/Email ApplicationtoArkibNegaraMalaysia
\J

ApplyFileDisposal

s A
-/

addDisposedFileRecord(files)[isAppliedDisposal/AddFileDisposalR

A

-

CreateFileDisposalRecor

v

Pending

L.

P

L.

updateApproveStatus(file, method)[isApproved|/setApprovedStatusAndDisposalMethod updateRejectStatus(files)[isRejected)/setRejectStatus

I

[UpdateAp pmvedStatusJ

Y

UpdateRejectStatus J

viewFilesNeedDispesal()[isApproved]/DisplayFilesToBeDisposed

' 3
DisplayFilesToBeDisposed
\- /

updateDisposedDate(file, date)[isDisposed]/setDisposedDate

i
4 3
UpdateDisposedDate
. /

updateDisp us(file)[isDisposed)/SetDisposed.

e 3
UpdateDisposedStatus
. /

updateFileStatus(file)[isDiposed]/SetFileStatusToDisposed

4 A
UpdateDisposedStatus

. /
[-©_

Figure 4.4: State-Transition Diagram for <disposedFileHandler Controller>

For Figure 4.4, the state of the disposedFileHandler Controller will change into
DisplayOutDatedFiles. Then, it will change to SubmitFileDisposalList once the user submits it.
After that, it will change to UpdateThickness, then ApplyFileDisposal state is triggered. Once apply,
it goes to CreateFileDisposalRecord state and change to pending after that. If the request is rejected,
it will change to UpdateRejectStatus state and end the transition. On the other hand, it will change
to UpdateApprovedStatus state, then UpdateDisposedDate is triggered after the
DisplayFilesToBeDisposed is triggered. Then the UpdateDisposedStatus is triggered finally, and the
state transition ends here.

Page 35 of 37

keyInFile(FileCode)/Find file in the system

SearchFiles
checkFileExistence(fileCode)[isExists]/Find file existence Pending checkFileExistence(fileCode)[isNotExist]/ Find file existence

. A
DisplayFileExist DisplayFileNotExist I

y

4| Checking '7
checkFile Availability(filecode)[NotAvailable]/Find file availability
DisplyFileAvailable DisplyFileNotAvailable|

checkFileAvailability(filecode)[Available]/Find File availability

checkPrivilege(staff,fileCode)[isPrivilege]/Check privilege I Checking checkPrivilege(staff,fileCode)[No Privilege]/Check staff privilege

y

DisplayStaffPrivilege [DisplayStaffNotPrivilege }

createBorrowedFileRecord(filecode)/Create BorrowID

. displayBorrowID():/Display the borrow record ' ;
(CreateBorrowFileRecord] i QrDisplay DisplayBorrowRecord ?

Figure 4.5: State-Transition Diagram for <borrowFileHandler Controller>

For Figure 4.5, the state of the borrowFileHandler Controller will change into SearchFile
when the file code is fill in the system. Then, the state change into pending to check either the file
exists or not. They will be two different states after pending which are DisplayFileNotExist to show
that the file is not exist on the system and DisplayFileExist to show the file exist in the system. For
DisplayFileNotExist, the state transition will end after that meanwhile for DisplayFileExist the state
change into checking to check either the file is available or not. They will be two different states
after checking which are DisplayFileNotAvailable to show that the file is not available right now
and DisplayFileAvailable to show the file is available. For DisplayFileNotAvailable, the state
transition will end after that meanwhile for DisplayFileAvailable the state change into checking to
check either the staff has privilege or not to borrow the file. They will be two different states after
checking which are DisplayStaffNotPrivilege to show that the staff has no privilege and
DisplayStaffPrivelege to show the staff has privilege. For DisplayStaffNotPrivilege, the state
transition will end after that meanwhile for DisplayStaffPrivelege the state change into
CreateBorrowFileRecord to create a new borrowlD. Lastly, the state will change into
DisplayBorrowRecord to show the borrow record of the user and then the state transition end.

Page 36 of 37

5. Conclusion
Based on Phase 2 report, there are many things that we have learned by doing this project.

Firstly, we have learned on how to create a use case diagram. Other than that, we also learn on how
to describe the use case, activity diagram and create a sequence diagram based on every use case.
We also create a domain modal to describe all the entities included in the system. We also create a
state diagram to show all the state and argument that made the state of the entity to change in the
system. Take note that not all the entities have a different state therefore we only included all the
entities that may have any change of state.

By doing phase 2 report, our group has learned many new things as we need to create many
new diagrams. By creating this diagram, it helps us to organize and understand more about the
information needed to be included in our system. This is because all the detailed information will be
displayed in the diagram. Other than that, we also learn on teamworking skills. This is because they
are many works needed to do in phase 2 so if they are only one person that do the work, we cannot
finish this phase in time. Therefore, we need to divide the work equally. Other than that, besides
doing the work that we need to do, we also always help each other when they are any team members
that has any problem to do their works. We learn that communication is a key when doing the project
with other people.

So, to conclude the Phase 2 report, they are many things that we have learned by doing this

project and we are glad to learn all the lesson by doing all the works given in phase 2.

6. References

Athuraliya, A. (2021, April 22). What is Sequence Diagram? Complete Guide with Examples.
Retrieved from creately: https://creately.com/blog/diagrams/sequence-diagram-tutorial/

Kruger, N. (2018, October 23). How to Write a Software Requirements Specification (SRS
Document). Retrieved from perforce: https://www.perforce.com/blog/alm/how-write-
software-requirements-specification-srs-document

Malaysia, A. N. (2021, April 1). Dasar Garis Panduan Penilaian dan Pemisahan Rekod Elektronik.
Retrieved from Arkib Negara Malaysia: http://www.arkib.gov.my/web/guest/penilaian-dan-
pemisahan-rekod-elektronik

Sharma, P. (n.d.). System Documentation: Features, Purpose and Contents. Retrieved from
YourArticleLibrary: https://www.yourarticlelibrary.com/management/mis-
management/system-documentation-features-purpose-and-contents-mis/70408

Page 37 of 37

	SECJ 2253 Requirements Engineering & Software Modeling Sem.2 2020/2021
	Table of Contents

