UTM

UNIVERSITI TEKNOLOGI MALAYSIA

SECJ 2253 Requirements Engineering & Software Modeling

Sem.2 2020/2021

PHASE 2: REQUIREMENTS MODEL DOCUMENT
(FUNCTIONAL, DATA, BEHAVIORAL PERSPECTIVEYS)

Mipanzu Online File Management System

<Mipanzu>

Team Members:

1. HUSNY MUSHARRAF BIN SHAMSUL KAMAL A19EC0051
2. TAN CHIAW TORNG A19EC0167
3. SEE WEN XIANG A19EC0206

4. WAN LUQMAN BIN WAN ZULLKEFLI A19EC0209

Table of Contents

Item Page No | Prepared by Moderated by
) Husny,)
Introduction 1 Chiaw Torng

Wan Lugman
Functional Perspective: Use Case (UC) Wen Xiang,)
_ _ 2 _ Chiaw Torng
Documentation (Diagram — UML UCD) Chiaw Torng
| Functional Perspective: Use Case (UC) All members
Documentation (Specification — UCS) & UML
Activity Diagram (AD)
UCO001 <Open new file>UCS & AD 3-5 Wan Lugman
UCO002 <Close file> UCS & AD 6-8 Husny
UCO003 <Track file location> UCS & AD 9-10 Wan Lugman Chiaw Torng
UC004 <Report the loss of file>UCS & AD 11-13 | Husny
UCO005 <Dispose of file>UCS & AD 14-16 | Chiaw Torng
UC006 <Borrow file>UCS & AD 17-19 | Wen Xiang
UCO007 <View file access record> UCS & AD 20-22 | Chiaw Torng
UC008<Detect the late return of file> UCS & AD 23-25 | Wan Lugman
UCO009 <Return file> UCS & AD 26-28 | Wen Xiang
Data Perspective: UML Domain Class Diagram)
29 All members Chiaw Torng
(DCD)
Behavioral Perspective: State-Transition Diagram)
30-34 | All members Chiaw Torng
(STD)
Conclusion 35 All members Chiaw Torng
References 35 All members Chiaw Torng

Business Process Mapping to Use Cases

Which Business
Process related
to the use case

uc ID

ucC

Use case
specification

PIC

Handle the open
file procedure

UCO001

Open new file

Use Case
Specification for
UC001 <Open
new file>

Wan Lugman

Handle the close
file procedure

uC002

Close file

Use Case
Specification for
UC002 <Close
file>

Husny

Handle the borrow
file procedure

UCO003

Track the file
location

Use Case
Specification for
UC003 <Track
file location>

Wan Lugman

UCO006

Borrow file

Use Case
Specification for
UCO006 <Borrow
file>

See Wen Xiang

Handle the return
file procedure

UCO009

Return file

Use Case
Specification for
UCO009 <Return
file>

See Wen Xiang

Handle the dispose
file procedure

UCO005

Dispose of file

Use Case
Specification for
UCO005 <Dispose
of file>

Tan Chiaw Torng

Monitor file
access

uCo04

Report the loss of
file

Use Case
Specification for
UC004 <Report
the loss of file>

Husny

uCo007

View file access
record

Use Case
Specification for
UCO007 <View
file access
record>

Tan Chiaw Torng

ucCoo08

Detect the late
return of file

Use Case
Specification for
UC008 <Detect
the late return of
file>

Wan Lugman

Remark: Italic text is cross-reference hyperlink.

Use cases mapping with Activity, and Sequence Diagram, State, Domain

State diagram (ONE)
Give the ONE controller

Domain Model
Give the name of

. . Sequence class in sequence diagram | entity class in
eI Activity Diagram Diagram which you you will sequence that which
represent in state you will include in
diagram domain model
Figure 2.1.1: File
UCO0L Activity Diagram for Sequence Diagram | State-Transition Diagram | SAOfficer
UCO001 <Open new file> | for UC001 <Open for <File Class> RUClerk
new file> Letter
Figure 2.2.1: File
UC002 Activity Diagram for Sequence Diagram | State-Transition Diagram SAOfficer
UC002 <Close file> for UC002 <Close | for <File Class>
file> RUClerk
L Figure 2.3.1: :
Activity Diagram for . . . File
UC003 UC003 <Track file Sequence Diagram State-‘l?ransﬂmn Diagram SAOfficer
; for UC003 <Track | for <File Class>
location>) . RUClerk
file location>
Activity Diagram for gelzzﬁgigjbli;\gram E?IZOWF"eRecord
Ucoo4 ;ﬁﬁgi <Reportthe loss for UC004 <Report None SAOfficer
the loss of file> RUClerk
State-Transition Diagram
. Figure 2.5.1: for <disposedFileHandler | fileDisposeRecord
Activity Diagram for . i i
UC005 UC005 <Dispose of Sequence Diagram | Contro er> _ File _
file> for UC005 State-Transition Diagram | SAOfficer
<Dispose of file> for <FileDisposedRecord | RUClerk
Class>
Figure 2.6.1: . .
UCO06 Activity Diagram for Sequence Diagram ?g?fg:?g:\;gﬁgg;ﬁglrsp borrowFileRecord
UC006 <Borrow file> for UC006 <Borrow Staff
) Controller>
file>
Activity Diagram for gégﬁgiggbli:a ram State-Transition Diagram | borrowFileRecord
UCcoo07 UCO007 <View file a g for <BorrowedFileRecord | SAOfficer
for UC007 <View
access record> : Class> RUClerk
file access record>
Figure 2.8.1:
Activity Diagram for Sequence Diagram | State-Transition Diagram borrowEileRecord
uCo08 UCO008 <Detect the late | for UC008 <Detect | for <BorrowedFileRecord
. Staff
return of file> the late return of Class>
file>
Figure 2.9.1: . .
UC009 Activity Diagram for Sequence Diagram ?g?f&ﬁgﬂgg@gggg borrowFileRecord
UCO009 <Return file> for UC009 <Return Class> Staff
file>

Remark: Italic text is cross-reference hyperlink.

1.

Introduction

The purpose of the RMD created is used in order for us to describe all the requirements elicit from
the file management system in JKSNJ. This is because we want to create and develop a new file
management system that will be changed from manual system to online system. RMD is best used
for us to document the functional requirements of the system that need to be developed. The
document will specify all the user expectations toward what the software is able to do. In the RMD,
we will use UML Use Case diagram, UC specifications, UML activity diagram, UML domain class
diagram, UML state diagram in order to get a more detailed understanding towards each process in
the system. All the documents related towards the file management system also will be recorded in
the RMD. It is also easy for us to see clearly all the issues and improvements that can be made
towards each process. All the requirements gathered in the RMD are elicited from the stakeholders
of JKSNJ on 11 April 2020. The parties involved for this RMD are Clerk of Record Unit (CRU) and
Syariah Assistant Officer (SAO).

The software product is Mipanzu Online File Management System to replace the current manual
file management system from JKSNJ. This file management system has the function of keeping
track of the location of the files and records. So, when the user wants to borrow the files, they need
to key in the code of the file. All file access information including the user identity, date and time
of borrowing and returning and file code will be stored online therefore it can replace the physical
version of “Kertas Minit”. Therefore, it is easier for SAQ as they can know who borrowed the file
and can keep track of the file location.

All the staff need to log in with passwords to verify their identities. Different groups of staff can
access different types of files according to their security levels. When the staff return files, the
system will record the date and time of return. The staff can also report the loss of file in the system.
The system will automatically notify the officers about the late return of files. The system can also
be used to dispose of files, open new files and close files. When they want to dispose of files, they
need the approval from Arkeb Negara Malaysia (ANM). Therefore, with this online version approval
from ANM can be done in minutes instead of hours or even days. The system will notify the officers
of the files that shall be disposed of according to Jabatan Pelupusan Record (JPR).

On the other hand, viewing files and store files does not need approval from ANM, instead the
CRU only needs to update the file status in the system. This system brings benefits to all JKSNJ
staffs, CRU and SAO where they can manage the file records and the daily procedures like
borrowing, returning, disposal and classification of files more efficiently. All the file records can be
backup to secure those records and prevent them from missing. Our goal is to produce an online file
management system that provides one-stop services to all JKSNJ staff with an objective to offer a
path for the users to have an easier work in managing the files and records while maintaining its
integrity.

Page 1 of 35

2. Functional Perspective: Use Case (UC) Docum

entation (Diagram — UML UCD)

The system features include several diagrams that helps us to create a good to-be system in the
future. There will be several diagrams created and all of them are used to explain all the requirement
and process needed for Mipanzu File Management System. The diagram that will be created are use
case diagram to show interaction between user and all the use case in the system, activity diagram
to documents the action sequences in the use case, domain model to show all the class with their
attributes in the system and state machine diagram to show the state of the class when there is a
trigger that made the state of the class to change if any. For every use case in the use case diagram,
we will create use case description and sequence diagram to see the flow and process for every use

case.

A

JKSNJ staff

|

Mipanzu Online File Management System

uCco09
Return file

ucCoo6
Borrow file

ucoo4
Report the loss
of file

UCo005
Dispose of

Syariah Assistant
Officer

| e

Clerks of Record \

Unit

file

uCo03
Track file
location

uUCoo7
View file access
record

UC008
Detect the late
return of file

uco01
Open new file

UC002
Close file

Figure 1: Use Case Diagram for Mipanzu Online File Management System

Page 2 of 35

2.1 Functional Perspective: Use Case (UC) Documentation (Specification — UCS) & UML
Activity Diagram (AD)

Table 2.1 Use Case Specification for UC001 <Open new file>

Use Case ID ucoo1

CED(EERS Open new file
Name
. This use case is used by Clerk of the record unit to open new file in Mipanzu
Description . .
Online File Management System.
Actor(s) Clerks of the record unit
Pre-

condition(s) A valid clerk of the record unit is logged on to the system.

1. The clerk of the record unit keys in the file code of the file.

2. The system automatically checks whether the file with the file code
entered exists.

3. If the file exists already, Exception E1 is performed.

4. The system displays message File does not exist.

5. The clerk of the record unit keys in the file code, security level of file,
Normal room number and shelf number of file storage space.
Flow(s)- NF 6. The system registers the new file with the file info entered by the clerk

of the record unit.
7. The clerk of the record unit keys in the reference number, title and judge
note of a letter.
8. The system registers the letter in the letter database.
9. The system adds the letter info into the file created in the file database.
10. The system updates the file database.

E1l: File exists already

1. The system displays the file info.

2. Clerk of record unit keys in the reference number of the letter.

_ 3. The system checks whether the letter with the reference number entered
Exception exists.

Flow(s) - EF 4. If the letter exists

4.1. The system displays an error message.

4.2. The use case ends.

5. Else

5.1. The use case resumes step 7.

Post-

- A new file is successfully created by the Clerks of the record unit.
condition(s)

Page 3 of 35

act UC001-Open new File)

Clerk of the record unit Mipanzu System

checks whether the file with File exist 2 [false]
the file code entered exists. .
A

[true]
key in file code

(Key in reference number_

- (Display the file inf
of the letter J L isplay the file info J

__f checks whether the letter
'L entered exists !

fDispIay message file does noj

exist

Letter exist ?

\
Key in File Code, security
level of the file, room number registers the

and shelf number of file 'l new file
storage space.

[True]

[False]
A

» - Display the error
message

keys in the reference
number, title and
judge note of a letter.

registers the
»-| letter in the letter

l database

\

adds the letter info into
the file created in the file
database

\

updates the |

file database.

Y
©‘

Figure 2.1: Activity Diagram for UC001 <Open new file>

Page 4 of 35

<<Data Access>> <<Controller>>
<<Boundary>> X .
. Hniary <<Controller>> <<Entity>> fileDA JetterRequestController <<bata Access>> <<Entity>> <<Data Access>>
. Aile sletterDA :borrowedFileStatus i
Clerks of the record unit

! ! \ ; I ! i

1 selectService() I ‘ I | ; i |

searchFile(filecode) ‘ | : : | | :

| I |
indFiledata(filecode) —

| findFiledata(filecod ! | | | !

: searchFileDatafilecode) : | | :

Alternative | e — — — — — — — | ‘ I |

- i P Ly ge——— fileNotExist | |

[FileNotExist] | | TileTotExist | | | |

- | |

registerFile(filefode, fecurityLevel roomMo, shellNoj | | } : |

registerFile(filecode, sedurityLevel roomNo, shellNo : : | | |

fnitFile(filecode, securityLevel,roomifo, sheliNo) | | | | :

| | I i
createFile(aFile) | [
kreateBorrowedFileRecord (i - | |
! L | | LJ

e~] === —--=- A — - - - |- === === +t—-—-——— === == =—== -“ ———————— b= =]

getFilelnfo() : <<Entity>> | :

| aLetter:Letter | |

——= T | (i
checkLetter(relNo) () checkLetter(refNo) '-‘1

Alternative

[LetterExist]

[(Else)

noLetter

]______

init|etter(relNo, title, note|
createLetter(refNo, title, note)

getLetterInfo()

laLetter:getLetterInfo()

| aLetterigeiNewLetier()

Successfully Added

|
e e
_____ updateFilelnfo(alLetter) updateFilelnfo(aLetter) EI]
I

/ Letter exists already

/

Figure 2.1.1: Sequence Diagram for UC001 <Open new file>

Page 5 of 35

Table 2.2 Use Case Specification for UC002 <Close file>

Use Case ID uco002

Jse Case Close file

Name

Descrintion This use case is used by Clerk of the record unit to close file in Mipanzu
P Online File Management System.

Actor(s) Clerks of the record unit

Pre-

condition(s)

A valid clerk of the record unit is logged on to the system.

Normal
Flow(s)- NF

=

The clerk of record unit keys in the file code of the file.

The system automatically checks whether the file with the file code

entered exists.

If the file does not exist, Exception E1 is performed.

The system displays file exists message.

The clerk of the record unit clicks on the close file button.

The system updates the file status to “Closed” in the file database.

The system automatically registers a new file with the same file info as

the original closed file in the file database.

8. The system sets the subsequent file code to the new file.

9. The system displays the new file code.

10. The clerk of the record unit clicks on delete file to delete the original file
info. [A1]

11. The system deletes the original file info from the file database.

N

No ok~ ow

Post-
condition(s)

File is successfully closed by the clerk of the record unit

Alternative [Al: The clerk of the record unit doesn’t click on delete file button]
Flow(s) - AF 1. The use case ends.
Post-

condition(s)

File is successfully closed by the clerk of the record unit

Exception
Flow(s) - EF

E1: File does not exist

1. The system displays an error message.
2. The use case ends.

Page 6 of 35

act UC002-Close File)

Clerk of the record unit

Mipanzu System

o)
key in file

checks whether the
file exists

File Exist?

<\ [False]
/s

[True]

/

code

)
click "Close"

~—

%

L message

(displays file exists

(updates the file

'Lstatus to "Closed"

displays the
new file code

click?

No

—

—

registers new file
with same file info

J

\

/

sets the subsequent file
code to the new file

AN

deletes the]

—
displays file not
exists message

original file infoJ

~@)—

Figure 2.2: Activity Diagram for UC002 <Close file>

Page 7 of 35

<<Boundary>>

RUClerk

<<Controller>> <<Entity>> <<DataAccess>>

selectService()

searchFile(filecode)

|.______

I
|
|
findFiledata(filecode)
searchFiledata(filecode)

Alternative

[FileExist]
(Attemnative |
>/
[File no use]
[Else]
(Else]

<= e T T T T

closeFile(filecode)

new filecode

H

deleteFilelnfo(filecode)

-1

e] <=~ Femew]
________ file exists
file exists.
T
| \
| \
loseFile(filecods I ‘
closeFile(filecode) |
\
closeFile(filecode)
L

bnitfle(filecode, securityLevel rolmNo, shellNa)

createFile(aFile)

-

code:getFileCode()

file not exist

fileDeleted

file not exist

deleteFileInfo(filecode)

[
--1]
-

deleteFileInfofilecode)

< _______ fileDeleted
fileDeleted

|
!
|
|
|
|

+
I

Figure 2.2.1: Sequence Diagram for UC002 <Close file>

Page 8 of 35

Table 2.3 Use Case Specification for UC003 <Track file location>

Use Case ID uCo03

N Track file location

Name

Description This use case is used by Clerk of the record unit to track file location in
P Mipanzu Online File Management System.

Actor(s) Clerks of the record unit

Pre-

condition(s)

A valid clerk of the record unit is logged on to the system.

1. The clerk of record unit keys in the file code of the file.
2. The system automatically checks whether the file with the file code entered
exists.

Normal 3. If the file does not exist, Exception E1 is performed.
Flow(s)- NF 4. The system displays file exists message.
5. The clerk of the record unit clicks on the search file button.
6. The system displays the location of the file (room number and shelf
number).
E1: File does not exist
Exception
Flow(s) - EF 1. The system displays an error message.
2. The use case ends.
Post-

condition(s)

The file location is successfully tracked.

Page 9 of 35

act UC003-Track File Location)

Clerk of the record unit

Mipanzu System

. 1.)
key in file

checks whether the
file exists

A

code

(1 oo)
click "Search

(displays file exists

File"

|

L message

(displays the]

File Exist?

Y

[True]

[False]

A

displays file not
exists message

=L location of file J

 J

Clerk of the record unit

Figure 2.3: Activity Diagram for UC003 <Track file location>

<<Boundary>>
:FileHandlingInterface

<<Boundary>>
:FileInterface

<<Controller>>
-fileRequestController

<<dataaccess>>
:FileDA

<<Entity>>
:File

selectService()

findFilelnfo()

requestFile(filecode)

1
|
|
|
findFiledata(filecode)
searchFiledata(filecode)
} -

|
- | | T
Alternative | — —
| — — — — — — —]
3 . 1. | e —m————] file exists
[FileExist] < — - — — —— < fille exists
file exists
trackFileLocation(filecode)
| (xoom, shelf):getFileLocation
displayFileLocation() | I~ ——
< filelocation - File location
____________ L - - P - = — - T — — | - - - - - =T —
[Else] | 11"t e = — - _]
| | < file Not Exist
<~ FeNormain]
| | - —— — — —
| file Not Exist
[:I< ———————— = —ievar T T T T

|

—
I
|
|
|
I

Figure 2.3.1: Sequence Diagram for UC003 <Track file location>

Page 10 of 35

Table 2.4 Use Case Specification for UC004 <Report the loss of file>

Use Case ID uCo04
08 CREE Report the loss of file
Name
Descrintion This use case is used by Clerk of the record unit and JKSNJ staff to report
P the loss of file in Mipanzu Online File Management System.
Clerk of record unit
Actor(s) Syariah Assistant Officer
JKSNJ staff
Pre-

condition(s)

A valid clerk of the record unit is logged on to the system.

1.The JKSNJ staff keys in the file code.

2.The system automatically checks whether the borrow record with the staff’s
ID and the file code entered exists.

3.If the borrow record does not exist, Exception E1 is performed.

4.The system displays borrow record found message.

Normal 5.The JKSNJ staff clicks on the report file lost button.
Flow(s)- NF . .
6. The system updates the borrow status as lost in the file access database.
7.The system updates the file status as lost in the file database.
8.The system sends notification to Syariah Assistant Officer and the clerk of
Record Unit about the file lost with the file code and the info of staff who
lost the file.
E1: File does not exist
Exception
Flow(s) - EF 1. The system displays an error message.
2. The use case ends.
Post-

condition(s)

The loss of file is successfully reported.

Page 11 of 35

act UC004-Report the Loss of File J

JKSNJ Staff

Mipanzu System

checks whether the
borrow record exists

record exist?

Y

)
key in file

A [False]

[True]

code

\

|

T\
click "Report

File Loss"
. J

(displays borrow
Lrecord found message

displays file not
exists message

updates the
borrow status
as lost

updates the file
status as lost

| l

sends notification to Syariah
Assistant Officer and the
clerk of Record Unit

\

Figure 2.4: Activity Diagram for UC004 <Report the loss of file>

Page 12 of 35

A

TKSN Stalf

l J—— I

I <Boundany> l

Figure 2.4.1:

Sequence Diagram for UC004 <Report the loss of file>

<<Entity;
Staft
T T
' i 1 ' 1 Il | ; |]
i i I | i [[\ ! i I Rtk -
1 et ! | | | } } } ‘ ! | |
1
reportLostiileq) . . | —— | | ! | | i
checkBorromRecord{safD, lecode) ‘ | I l | 1
mﬂmmwlsmldtmﬁm,hl}(m@) ! | I I I
| i , tbcode) ‘ | | 1 |
I | T I
" H | | 1 I
Alternatjec T H A J | T 0 H J
! ! =~ I I I 1
[Borfow fecord found] | My T —— | ! 1
Borraw Record lound Barrow rd found | ! ! i
| BarrewRemed foumd e —mmmm e — - — = I | 1 | |
= = === | | | | | I |
FeportLostistaffiD, filecode] | I ! | I | I
1 reportLestistalf1D, filecde] | | ! | | ! |
| updatelorrowStatus{filecode) | | I |] I I
| 1 setBorrowStatus(lilecode) | ! | I I 1
I | ‘ | I I |
| whdateFileStatus(filecode, "last | | | | | |
I
| s Loa) [\ | I I |
T I | 1 | 1
| aStaff-getStaffinfo{staffID) | | I I
! [[[I |
I I I | 1
| | | 1
otifyF ileLostifilecode, staff) | | | I
] T] | I |
notifyFikeLos (filecode, staff) 1 | 1 4 1 1
I I I ‘ | 1 1
I I I | ! l I
‘ . L ‘ ‘ B : '
I B L ____ S D PR
[Elsq) | -‘r ; | | :
S TH:m.T.r,—‘D | I : : |
[K——=== B } I I | " !
e <= = =~ o Rec o —] ‘ [| i |
i i P 1 T ! ! ! ! H ! !
- l + ‘ f H 1] 1
| I I I I |
— N f ' | i i ' ' '

Page 13 of 35

Table 2.5 Use Case Specification for UC005 <Dispose of file>

Use Case ID uUcCo005

08 CREE Dispose of file
Name
Descrioti This use case is used by Clerk of the record unit to dispose file in Mipanzu
escription > U
Online File Management System.
Clerk of record unit
Actor(s) Syariah Assistant Officer
JKSNJ staff
Pre-

condition(s) A valid clerk of the record unit is logged on to the system.

1. The clerk of record unit clicks on “Show outdated files” to display the
files that exceed the maximum storage time.

2. The clerk of the record unit enters the file codes of other damaged files to
be disposed of.

3. The clerk of the record unit clicks on Send to submit the file dispose list
through the system to Syariah Assistant Officer.

4. Syariah Assistant Officer updates the thickness of files from the file
dispose list on the dispose file page.

5. Syariah Assistant Officer applies the file disposal through email to Arkib
Negara Malaysia.

EIO KL 6. Syariah Assistant Officer clicks on Add to Disposal Record to insert the
ow(s)- NF fi S X) :
iles from file disposal list to disposal record in the system.
7. Syariah Assistant Officer receives email of file disposal list with approval
status and disposal method from Arkib Negara Malaysia.
8. If the application of file disposal is rejected, Exception E1 is performed.
9. Syariah Assistant Officer updates the file dispose status as “Approved”.
10. Syariah Assistant Officer updates the file disposal method.
11. The clerk of the record unit views the list of files with approved file
disposed status.
12. The clerk of the record unit updates the file dispose date.
13. The clerk of record unit updates the file dispose status as “Disposed”.
E1: The application of file disposal is rejected
Exception
Flow(s) - EF 1. Syariah Assistant Officer updates the file dispose status as “Rejected”.
2. The use case ends.
Post-

condition(s) File is successfully disposed.

Page 14 of 35

act UC005-Dispose of File J

Clerk of Record Unit

Mipanzu System

Syariah Assistant Officer

Arkib Negara Malaysia

click "Show Outdated Files"

enter filecode of other
damaged files to be disposed

Display files which exceeds
max storage time

of

click "Submit”

send File Disposed List to

View the list of files with
"approved” file dispose status

view file dispose list

Syariah Assistant Officer

([updaceFileThickness Je—f

Enter file dispose date

Update file dispose status
and disposal method

Enter file dispose status
-"disposed”

Update File Dispose date
and file status

Update File

ispose status |

click "Add to disposal
record” for selected files in

apply File Disposal through
Email to Arkib Negara Malaysia

the given file disposal list

email file disposal list with

approval status and dispose

method to Syariah Assistant
Officer

J

@

True

ve?

Enter file dispose status -
"approved”

Enter disposal method

Enter file dispose status -
“rejected”

Figure 2.5: Activity Diagram for UCO005 <Dispose of file>

Page 15 of 35

s view il Appron e ToBe Duposed)

fies
updae spescdDatrcfies, dare
apdateDupuscdDaieies. daies
[T ———
updatrDispasedStasusibie)
mpedaieRieyr Statmdi)

<<Boundary>> <<Controller>> <<Entity>> <Duahco>
DisposeFilelnterface DisposeFilellandler <File FileDuposalDA
T
ek o o Ui T
c —— =
seberServcel)
ks displayDumdat vtk)
D amagedt deC o TobeDspsr]
[—
e T kst ke
apply e Onspanadfikes |
abdDiaposedl e ordilin]
addll e fibes)
]
wpdote ApproveStatunfie, meshod)
8 .

ewFilesSerdDisgos i

setlhpasrdDatr{date)

Figure 2.5.1: Sequence Diagram for UC005 <Dispose of file>

Page 16 of 35

Table 2.6 Use Case Specification for UC006 <Borrow file>

Use Case ID UC006

08 CREE Borrow file
Name
Descrintion This use case is used by JKSNJ staff to borrow file from Clerk of the record
P unit in Mipanzu Online File Management System.
Clerk of record unit
AEERS, IKSNJ staff
Pre-

condition(s) A valid JKSNJ staff is logged on to the system.

1. The JKSNJ staff keys in the file code.

2. The system automatically checks whether the file with the file code
entered exists.

3. If the file does not exist, Exception E1 is performed.

4. The system automatically checks whether the file with the file code
entered is still available (not borrowed).

5. If the file is not available, Exception E2 is performed.

Normal 6. The system automatically checks whether the staff has the privilege to

Flow(s)- NF borrow the file.

7. If the staff does not have the privilege to borrow the file, Exception E3 is
performed.

8. The system creates a borrow ID.

9. The system updates the file access database.

10. The system shows the borrow ID to the staff on the borrow file interface.

11. The clerk of the record unit keys in the borrow ID.

12. The system displays the borrow record.

E1: File does not exist

1. The system displays File not found message.

2. The use case ends.

E2: File is not available

Exception 1. The system displays the last borrower’s name and staff ID.
Flow(s) - EF 2. The system displays File is not available message.

3. The use case ends.

E3: The staff does not have the privilege to borrow the file
1. The system displays message No right to borrow the file.
2. The use case ends.

Post-

condition(s) File is successfully borrowed by the JKSNJ staff.

Page 17 of 35

act UC006-Borrow File

JKSNJ Staff

Mipanzu System

Clerk of Record Unit

I Key in file code

checks whether the file with
the file code entered exists

Checks whether the file
availability with the file code

Displays File not found
message

Displays the last borrower’s
name and staff ID

Available?

'

Displays File is not available
message

checks whether the staff has

the privilege to borrow the file

Displays message No right to
borrow the file

Has
Privilege?

Creates a borrow 1D

:

Updates the file access
database

Shows the borrow 1D to the
staff on the borrow file
interface.

Displays the borrow record

Keys in the borrow 1D

Figure 2.6: Activity Diagram for UC006 <Borrow file>

Page 18 of 35

<<Boundary>> <<Controller>> <<C ler>> <<Entity>> <<Datah —y <<Data Access>> <<Entity>>
‘BorvowFileHandler i Stalf StatlDA : File
T T T T
| | | | ! | | |
| I
| | | |
Jksﬂi_m r Clerk of rhcord unit : : : | | | |
selectServiee() | |
| | | | I
borrowFile(fileCode | ‘ |
rrow ikl ! 1 staff:getLoginDetail) [) M) — | | |
| gel id:getStaffiD(| | |
| name: getStalfName() | | |
| <—- Tamn getFileAccessPriviledge() : : |
_______ |
| € aiiname O | | |
| < ________ fileAccessPriviledge L
| TileAccessPriviledge | |
| ” -ode) : : searchFileData(filecode)
~ Tl o~ T T T s M i
| (] getBorrowStatus(fileCode)
s ’ leital
|
| e ————— T —————- e ———— " e — e ——— le&la] getBorrowerID(
| o i —————— - —— e e R
| | borrawer id | J
eka] displayBorrowerInfo(filgcode) : | | :
I - | : ‘ I
| L | |
| [e&alp: Mhﬂvﬂed]r?laﬂ. fileCode) T | | LeurieyLevel
€= — = e e — — |
UUpino rightto """F"" borrowiD:borrowFile(flecode, stalfID, staffName) | 1 M
1
- | | | I borgow staffiD, T
displayBorrowiD() | | : | LJ |
| | | | | |
| I | ‘ I |
’J ‘If :]:mlarrwlﬂnl‘blrrwm- : | } : ;
Il | | \ I |

/ ” viewBor Info(bar D) | l ‘ I ‘

i rrawinfo(borrowID) | | | ‘

1 | ! readBofrowlinfo(borrawiD) | | —
1! | | | | readBorrowlnfa(borrowlD) | |
1l | | | | | |
1 | — | I I | |
il | | I | \ I | |

i | ‘ I I \ I — \ I

il | | I | \ I I \ I

| | | I | I I I | |

[Tt nociownd | | [: | | | | |
e &lalfile is not available | | | | : : : | |

| | | | |

[<aanip] no right 1o borravw f I | } I : \ : I | |
I | | | I \ I

| | | | | | | | | |

I | | | | | | | I |

| | | | | | | | | |

1 1 | 1 1]]] | 1

Figure 2.6.1: Sequence Diagram for UC006 <Borrow file>

Page 19 of 35

Table 2.7 Use Case Specification for UC007 <View file access record>

Use Case ID uC007

280 R View file access record

Name

Description This use case is used by Clerk of the record unit t view file access record in
b Mipanzu Online File Management System.

Actor(s) Clerk of record unit

Pre-

condition(s)

A valid Clerk of record unit is logged on to the system.

1. The clerk of record unit keys in the file code of the file.
NlaE] 2. The system automatically checks whether the file with the file code
El -NE entered exists. _ _ _
ow(s) 3. Ifthe file does not exist, Exception E1 is performed.
4. The system displays the file access record.
E1: File does not exist
Exception
Flow(s) - EF The system displays an error message.
The use case ends.
Post-

condition(s)

File access record is successfully viewed by Clerk of the record unit

Page 20 of 35

act UC007-View File Access Record)

Clerk of Record Unit

Mipanzu System

[Enter filecodeJ—

e

heck whether the borrow fil

record exists

'

Exists

Yes

J

)

Display File
Access Record

J

..[R

Display File

ecord Not F oundJ

Y

-@

Figure 2.7: Activity Diagram for UC007 <View file access record>

Page 21 of 35

<<Boundary>> <<Boundary>> <<Controller>> <<Entity>> <<dataaccess>>
:FileHandlingInterface :ViewFileAccessInterface :fileAccessControllen :borrowFileRecord fileAccessDA
RUClerk

7

selectService()

Y

______D____

searchFile(filecode)

-

searchFile(filecode)

|
|
|
|
|
| searchFile(filecode) ——
|
.

[Alternative

[FileExi
- Tileint?xi; -
<~ Nt
<————————= file Not Exist
| !
I
|
I

re tFileBorrowRecord (fllecode

rd:getFileBorrowRecord(filecode)

!

|
|
|
" | viewFileAccess()
|
|
|
|
|
|
|
|
|

__| _'________

1

trlsplayF ileAccessRecord(recbed) L

file Not Exist

[
8
A
A

Figure 2.7.1: Sequence Diagram for UC007 <View file access record>

Page 22 of 35

Table 2.8 Use Case Specification for UC008 <Detect the late return of file>

Use Case ID uCcoos
Use Case Detect the late return of file
Name
Descriotion This use case is used by Clerk of the record unit to detect the late return of
P file by JJKSNJ staff in Mipanzu Online File Management System.
JKSNJ staff
Actor(s) Clerk of the record unit
Pre-

condition(s)

A valid Clerk of record unit is logged on to the system.

1. The clerk of the record unit clicks on the View File Late Return button.
Normal 2. The system displays the list of files that exceeds the return deadline with
Flow(s)- NF their file access record.

3. The system notifies the last borrower of the files in the late return file list.
Post- 1. The list of files that exceed the deadline of return is successfully viewed.
condition(s) 2. The return file notification is successfully sent to the last borrowers.

Page 23 of 35

act UC008-Detect the late return of file)

Clerk of tt}e record Mipanzu System
unit
displays the list of files that
—| exceeds the return deadline
with their file access record
/clicks on the\
View File
Lm]f Return notifies the last borrower of
utton) the files in the late return file
list.

Figure 2.8: Activity Diagram for UC008 <Detect the late return of file>

Page 24 of 35

RUClerk

<<Boundary>>

<<Boundary>>

:FileHandlingInterface :ViewFileAccessInterface

<<Controller>>

:fileAccessController

<<Entity>> <<DataAccess>>
:borrowFileRecord :fileAccessDA

selectService()

1
—

Y

|
I
I
- | | viewFileAccess()
I
I
I
I
I

file access record

1

I

I

I

I
displayLateReturnLlist() ——

-

|

|

|

|

|

|
records:findLateReturnFiles() ——

d‘i-spl:lyFileAccessRemrd (record)

notifyLastBorrower()
»

records:getFilesLateReturn()
-

notifyLastBorrower(Staff staff)

-

JKSNIJ staff

T
I
|
|

L
I
I
I

Figure 2.8.1: Sequence Diagram for UC008 <Detect the late return of file>

_I
il
[

Page 25 of 35

Table 2.9 Use Case Specification for UC009 <Return file>

Use Case ID uCo009
Use Case Return file
Name
. This use case is used by JKSNJ staff to return file to Clerk of the record unit
Description . . .
in Mipanzu Online File Management System.
JKSNJ staff
g Clerk of the record unit
Pre- 1. A JKSNJ staff is taking the file that they borrowed to the counter of

condition(s)

JKSNJ.

2. A valid clerk of the record unit is logged on to the system.
1. The clerk of the record unit keys in the borrow ID.
2. The system automatically checks whether the borrow record with the
Normal borrow ID entered exists.
Flow(s)- NF 3. If the borrow record does not exist, Exception E1 is performed.
4. The system displays the file borrow info.
5. The clerk of the record unit clicks on the Return File button.
6. The system updates the borrow status in the file access database.
E1l: Borrow Record does not exist
Exception
Flow(s) - EF The system displays an error message.
The use case ends.
Post-

condition(s)

File is successfully returned from the JKSNJ staff

Page 26 of 35

act UC009-Return File

Clerk of the record unit

Mipanzu System

Key in Borrow ID

checks whether the borrow
record with the borrow ID
entered exists

Clicks on the Return File

button

Y

Borrow
ID Exist?

Displays an error message.

A

Displays the file borrow info

_ | Updates the borrow status in

the file access database

Figure 2.9: Activity Diagram for UC009 <Return file>

Page 27 of 35

<<Boundary>>
:returnFilelnterface

RUClerk

<<Controller>>
:returnFileHandler

<<Entity>>
:borrowedFileRecord

<<Data Access>>
fileAccessDA

borrow info

returnFile()

borrow info

returnFile(borrowlD)

selectService()
o checkBorrowRecord(borrowlD)
o checkBorrowRecord(borrowID)
o checkBorrowRecord(borrowlD)
Alternatiye <
borrow record found " borrow record found |
[Borrow Recard fpund] < — — — — — — —
getBorrowInfo()
- getBorrowlnfo()

ﬁxrraw record not found

Borrow record not found

A

borrow info

orrowStatus(borrowlD, "available")

getBorrowlInfo()

updateBor

A

borrow info

owStatus(borrowlID, "available")
-

Borrow record not found

Borrow record not found

Figure 2.9.1: Sequence Diagram for UC009 <Return file>

Page 28 of 35

3. Data Perspective: UML Domain Class Diagram (DCD)

For UML Domain Class Diagram, there are several entities that need to be created in the
system which are Staff, File, borrowedFileRecord, file DisposedRecord and Letter. They are also
two entity that will inherit the staff attributes which are the SAOfficer and RUClerk which is a more
specific position that have their own unique attributes. For relationship, one staff may borrow and
return one or many Files. At the same time, one Staff Administrator Officer (SAOfficer) may
examine and monitor one or many borrowedFileRecord and fileDisposedRecord. Other than that,
one Clerks of the record unit also can open and close one and many Files. File has a composition
relationship with Letter which means that the Letter cannot exist if there are no File. One or many
Files may contain one Letter. File also has an aggregation relationship with borrowedFileRecord
therefore one or many Files will have one or many borrowedFileRecord. Meanwhile,
fileDisposedRecord has an aggregation relationship with file so one or many fileDisposedRecord
will has and list out one or many Files. The aggregation relationship means that the
borrowedFileRecord belongs to File while File belongs to fileDisposedRecord.

Staff File
staffName: String borrow B> fileCode: String
s(nﬁld. String 5 13 * roomNum: Tnt
staffPassword:String L shelfNum: Int <>
rilm\cc?ssPri\'ilcdgc:S(rmg return B fileStatus:String 1 *
mle:;?lrlng securityLevel:String o contain
g'"‘” '.S;:"fg i 1...1 1...% | storageTime:Time
conmctNo:oring open B» thickness:double '
noOfDoc:int
Mandatory,Or % dateCreated: Date
{ y.Or} close ® 1% | o eipae
branch:String
\ Ll 1. % T
= o L™ Letter
SAOfficer RUCIlerk *
i . S refNo:int
SAOId: String RUId: String 1.1 ‘ title:String
1.1 1.1 11 listOut dateEntered:Date
istOu A
access judgeNote:String
" ; v borrowedFileRecord .y
examine | Monitor 1
' ' 1 Ve * borrowID:String
borrowersName: string fileDisposedRecord
borrowerID: string
fileCode: string fileCode:String
timeBorrowed: Datetime disposedStatus:String
* timeReturned:Datetime disposedDate:Date
| " borrowStatus: String disposedMethod:String
J 1.

Figure 3.0: Domain Class Diagram for Mipanzu Online File Management System

Page 29 of 35

4. Behavioral Perspective: UML State-Transition Diagram (STD)

For UML State-Transition Diagram, there are several entities class that is created for state-
transition diagram which are File, borrowedFileRecord, file DisposedRecord. Not only that, there
are two controller class that have been created as well which is disposeFileHandler and
borrowFileHandler. These classes are chosen because each of these entities have their own states
and will change between states when they are triggered.

initFile(filecade, securityLevel, raomNo, shelfNo)| FileNot Exist|/CreatcFile

N initFile(filecode, securityLevel, roomNu, shelfNo)[ExtendFileSeries)/CreateFile
ow

[isAvailable]

LetterAdded

I Pending I

setFileStatus("Lost")[FileLostReported]/UpdateLostFileStatus 1 closeFile(filecade)updateClasedFileStatus

updateThickness(thickness)/SetThickness

Lost | ThicknessUpdated | w

deleteFilelnfo(filecode)[FileNoUse]DeleteFile

.

ki
I Pending | Deleted

updateFileStatus(filecode, "Disposed)[isDisposed VupdateDisposed FileStatus

Figure 4.1: State-Transition Diagram for <File Class>

Figure 4.1 shows the state transition diagram for file class. A new file will be created first in
the system. Then, the new state will change into letter added state as every file need to include a
letter. Then, the file class will change the state into pending as they will be three different state that
can happen to the file class based on the arguments and condition. The first condition is when the
file status is lost. This will make the file class to change into lost and the state transition will end
there. The second condition is when the file need to be disposed. First, the file state will change into
thickness updated as we need to update the thickness of the file. Then, the file will change it state
into pending as file class need to make sure that the file fulfills the condition to be disposed. Lastly,
the file class will change its state into disposed and the state transition end there. The third condition
made the file class to change its current state into closed. Then, the state will change either to a new
file or deleted. The state change into a new file as the file that is closed will be used to attach to a
new file created. For deleted, the file will be in the deleted state and the state transition end here.

Page 30 of 35

createBorrowedFileRecord(filecode)|isFileCreated)/addBorrowedFileRecord

[isAvailable]

¥

—
»| Available

—
Y
—
Pending
|

l

borrowFile(filecode, staffID, staffName)[isBorrowed)/updateBorrowedFileRecord

[lisAwvailable]

}

Pending

updateBorrowStatus(borrowlD, "Available ")|isReturned|/updateBorrowedStatus

updateBorrowStatus(filecode)|fileLostReported|/setLostStatus

®

Figure 4.2: State-Transition Diagram for <BorrowedFileRecord Class>

Figure 4.2 shows the state-transition diagram for BorrowedFileRecord class. A new record
will be created first in the system. Then, the new state will change into available state. It will be in
pending state before it will be borrowed. After that, the state will change to borrowed state once it
is borrowed. The state will be pending again when it is borrowed before returning it. If the borrow
file is lost, the state will change to lost state and the state-transition diagram ends here.

Page 31 of 35

addDisposeFileRecord(files)lisDisposalApplied)’ createDisposceFileRecord

update ApproveStatus{method)[isDisposal Approved]setApproved Status
updateRejectedStatus{file)[lisDisposalApproved]seiRejectedStatus

Rejected Approved

Iﬁ

setDisposalMethod(method)[isDisposal Aprroved]/setDisposeMthod

MethodUpdated

Pending

{} D.F

updateDisposedDate(file, date)[isDisposed]seiDisposedDate

DisposedDateUpdated

updateDisposedStatus(file)[isDisposedl/setDisposed

[Disposed]

ﬁ}

@)~

Figure 4.3: State-Transition Diagram for <FileDisposedRecord Class>

For Figure 4.3, a new FileDisposedRecord Class will be created when we add the dispose
file record in the system. This made the state of the class to change into new. Then, the state will be
change into pending as the FileDisposedRecord Class need to make sure that it can be disposed.
After that, the FileDisposedRecord Class will be in two different state which is rejected that means
the disposed file is rejected and approved that means the file is approved to be disposed. For rejected,
the state transition end there meanwhile for approved the state then will change into methodUpdated.
It will update the method and the state will change into pending to make sure the file can be disposed.
Next, the state will change into DisposalDateUpdated to set the date of the file to be disposed and
display the disposed date. Lastly, the state will change into disposed by update the disposed status
and the state transition end here.

Page 32 of 35

displayOutdatedFile()[isLoggedOn)/Display Outdated Files

p
DisplayOutDatedFiles J

(-

submitDisposalList()/SendFileListtoSyariahAssi Officer
\J

-

SubmitFileDisposalLis J

o

npda(eThlckness(lhlckness)[ilespasalListReceived]/SelThickness

-
UpdateThickness J

(-

applyFileDisposal(files)/Email ApplicationtoArkibNegaraMalaysia
\J

7

ApplyFileDisposal J

(.

addDisposedFileRecord(files)[isAppliedDisposal]/AddFileDisposalR

A\

-
CreateFileDisposalReco ﬂ
o
4
Pending
(-
updateApproveStatus(file, method)[isApproved]/setApprovedStatusAndDisposalMethod updateREJectStalns{ﬁlES)[lsREJErled]fselREjectSlams

[UpdateAp provedStatusJ [UpdateRejectStatus J

viewFilesNeedDisposal()[isApproved]/DisplayFilesToBeDisposed

' A
DisplayFilesToBeDisposed
- /

updateDisposedDate(file, date)[isDisposed]/setDisposedDate
¥
' “

UpdateDisposedDate
_ /

updateDisposedStatus(file)[isDi

dJ/SetDisposed:

, N\
UpdateDisposedStatus

- i J/

updateFileStatus(file)[isDiposed]/SetFileStatusToDisposed

e Y
UpdateDisposedStatus

. J

Figure 4.4: State-Transition Diagram for <disposedFileHandler Controller>

For Figure 4.4, the state of the disposedFileHandler Controller will change into
DisplayOutDatedFiles. Then, it will change to SubmitFileDisposalList once the user submits it.
After that, it will change to UpdateThickness, then ApplyFileDisposal state is triggered. Once apply,
it goes to CreateFileDisposalRecord state and change to pending after that. If the request is rejected,
it will change to UpdateRejectStatus state and end the transition. On the other hand, it will change
to UpdateApprovedStatus state, then UpdateDisposedDate is triggered after the
DisplayFilesToBeDisposed is triggered. Then the UpdateDisposedStatus is triggered finally, and the
state transition ends here.

Page 33 of 35

keylnFile(FileCode)/Find file in the system

SearchFiles

checkFileExistence(fileCode)[isExists]/Find file existence Pending checkFileExistence(fileCode)[isNotExist}/ Find file existence
l DisplayFileExist I DisplayFileNotExist I

4| Checking |7
checkFileAvailability(filecode)[NotAvailable]/Find file availability
DisplyFileAvailable I DisplyFiIeNotAvailableI

checkPrivilege(staff,fileCode)[isPrivilege]/Check privilege Checking checkPrivilege(staff,fileCode)[No Privilege]/Check staff privilege
DisplayStaffPrivilege [DisplayStaffNotPrivilege }

createBorrowedFileRecord(filecode)/Create BorrowID

displayBorrowID():/Display the borrow r 'd' I
[CreateBorrowFileRecord } ioplayRonoWIDO: RIRIAY e boTow teeok ~l DisplayBorrowRecord' ‘\?j

checkFileAvailability(filecode)[Available]/Find File availability

Figure 4.5: State-Transition Diagram for <borrowFileHandler Controller>

For Figure 4.5, the state of the borrowFileHandler Controller will change into SearchFile
when the file code is fill in the system. Then, the state change into pending to check either the file
exists or not. They will be two different states after pending which are DisplayFileNotExist to show
that the file is not exist on the system and DisplayFileExist to show the file exist in the system. For
DisplayFileNotExist, the state transition will end after that meanwhile for DisplayFileExist the state
change into checking to check either the file is available or not. They will be two different states
after checking which are DisplayFileNotAvailable to show that the file is not available right now
and DisplayFileAvailable to show the file is available. For DisplayFileNotAvailable, the state
transition will end after that meanwhile for DisplayFileAvailable the state change into checking to
check either the staff has privilege or not to borrow the file. They will be two different states after
checking which are DisplayStaffNotPrivilege to show that the staff has no privilege and
DisplayStaffPrivelege to show the staff has privilege. For DisplayStaffNotPrivilege, the state
transition will end after that meanwhile for DisplayStaffPrivelege the state change into
CreateBorrowFileRecord to create a new borrowlID. Lastly, the state will change into
DisplayBorrowRecord to show the borrow record of the user and then the state transition end.

Page 34 of 35

5. Conclusion
Based on Phase 2 report, there are many things that we have learned by doing this project.

Firstly, we have learned on how to create a use case diagram. Other than that, we also learn on how
to describe the use case, activity diagram and create a sequence diagram based on every use case.
We also create a domain modal to describe all the entities included in the system. We also create a
state diagram to show all the state and argument that made the state of the entity to change in the
system. Take note that not all the entities have a different state therefore we only included all the
entities that may have any change of state.

By doing phase 2 report, our group has learned many new things as we need to create many
new diagrams. By creating this diagram, it helps us to organize and understand more about the
information needed to be included in our system. This is because all the detailed information will be
displayed in the diagram. Other than that, we also learn on teamworking skills. This is because they
are many works needed to do in phase 2 so if they are only one person that do the work, we cannot
finish this phase in time. Therefore, we need to divide the work equally. Other than that, besides
doing the work that we need to do, we also always help each other when they are any team members
that has any problem to do their works. We learn that communication is a key when doing the project
with other people.

So, to conclude the Phase 2 report, they are many things that we have learned by doing this

project and we are glad to learn all the lesson by doing all the works given in phase 2.

6. References

Athuraliya, A. (2021, April 22). What is Sequence Diagram? Complete Guide with Examples.
Retrieved from creately: https://creately.com/blog/diagrams/sequence-diagram-tutorial/

Kruger, N. (2018, October 23). How to Write a Software Requirements Specification (SRS
Document). Retrieved from perforce: https://www.perforce.com/blog/alm/how-write-
software-requirements-specification-srs-document

Malaysia, A. N. (2021, April 1). Dasar Garis Panduan Penilaian dan Pemisahan Rekod Elektronik.
Retrieved from Arkib Negara Malaysia: http://www.arkib.gov.my/web/guest/penilaian-dan-
pemisahan-rekod-elektronik

Sharma, P. (n.d.). System Documentation: Features, Purpose and Contents. Retrieved from
YourArticleLibrary: https://www.yourarticlelibrary.com/management/mis-
management/system-documentation-features-purpose-and-contents-mis/70408

Page 35 of 35

