

SECJ 2253 Requirements Engineering & Software Modeling

Sem.2 2020/2021

PHASE 2: REQUIREMENTS MODEL DOCUMENT

(FUNCTIONAL, DATA, BEHAVIORAL PERSPECTIVES)

Mipanzu Online File Management System

<Mipanzu>

Team Members:

1. HUSNY MUSHARRAF BIN SHAMSUL KAMAL A19EC0051

2. TAN CHIAW TORNG A19EC0167

3. SEE WEN XIANG A19EC0206

4. WAN LUQMAN BIN WAN ZULLKEFLI A19EC0209

Table of Contents

Item Page No Prepared by Moderated by

1. Introduction 1
Husny,

Wan Luqman
Chiaw Torng

2. Functional Perspective: Use Case (UC)

Documentation (Diagram – UML UCD)
2

Wen Xiang,

Chiaw Torng
Chiaw Torng

2.1 Functional Perspective: Use Case (UC)

Documentation (Specification – UCS) & UML

Activity Diagram (AD)

UC001 <Open new file>UCS & AD

UC002 <Close file> UCS & AD

UC003 <Track file location> UCS & AD

UC004 <Report the loss of file>UCS & AD

UC005 <Dispose of file>UCS & AD

UC006 <Borrow file>UCS & AD

UC007 <View file access record> UCS & AD

UC008<Detect the late return of file> UCS & AD

UC009 <Return file> UCS & AD

3-5

6-8

9-10

11-13

14-16

17-19

20-22

23-25

26-28

All members

Wan Luqman

Husny

Wan Luqman

Husny

Chiaw Torng

Wen Xiang

Chiaw Torng

Wan Luqman

Wen Xiang

Chiaw Torng

3. Data Perspective: UML Domain Class Diagram

(DCD)
29 All members Chiaw Torng

4. Behavioral Perspective: State-Transition Diagram

(STD)
30-34 All members Chiaw Torng

5. Conclusion 35 All members Chiaw Torng

6. References 35 All members Chiaw Torng

Business Process Mapping to Use Cases

Which Business

Process related

to the use case

UC ID UC
Use case

specification
PIC

Handle the open

file procedure
UC001 Open new file

Use Case

Specification for

UC001 <Open

new file>

Wan Luqman

Handle the close

file procedure
UC002 Close file

Use Case

Specification for

UC002 <Close

file>

Husny

Handle the borrow

file procedure

UC003
Track the file

location

Use Case

Specification for

UC003 <Track

file location>

Wan Luqman

UC006 Borrow file

Use Case

Specification for

UC006 <Borrow

file>

See Wen Xiang

Handle the return

file procedure
UC009 Return file

Use Case

Specification for

UC009 <Return

file>

See Wen Xiang

Handle the dispose

file procedure
UC005 Dispose of file

Use Case

Specification for

UC005 <Dispose

of file>

Tan Chiaw Torng

Monitor file

access

UC004
Report the loss of

file

Use Case

Specification for

UC004 <Report

the loss of file>

Husny

UC007
View file access

record

Use Case

Specification for

UC007 <View

file access

record>

Tan Chiaw Torng

UC008
Detect the late

return of file

Use Case

Specification for

UC008 <Detect

the late return of

file>

Wan Luqman

Remark: Italic text is cross-reference hyperlink.

Use cases mapping with Activity, and Sequence Diagram, State, Domain

Use Cases Activity Diagram
Sequence

Diagram

State diagram (ONE)

Give the ONE controller

class in sequence diagram

which you you will

represent in state

diagram

Domain Model

Give the name of

entity class in

sequence that which

you will include in

domain model

UC001
Activity Diagram for

UC001 <Open new file>

Figure 2.1.1:

Sequence Diagram

for UC001 <Open

new file>

State-Transition Diagram

for <File Class>

File

SAOfficer

RUClerk

Letter

UC002
Activity Diagram for

UC002 <Close file>

Figure 2.2.1:

Sequence Diagram

for UC002 <Close

file>

State-Transition Diagram

for <File Class>

File

SAOfficer

RUClerk

UC003

Activity Diagram for

UC003 <Track file

location>

Figure 2.3.1:

Sequence Diagram

for UC003 <Track

file location>

State-Transition Diagram

for <File Class>

File

SAOfficer

RUClerk

UC004

Activity Diagram for

UC004 <Report the loss

of file>

Figure 2.4.1:

Sequence Diagram

for UC004 <Report

the loss of file>

None

borrowFileRecord

File

SAOfficer

RUClerk

UC005

Activity Diagram for

UC005 <Dispose of

file>

Figure 2.5.1:

Sequence Diagram

for UC005

<Dispose of file>

State-Transition Diagram

for <disposedFileHandler

Controller>

State-Transition Diagram

for <FileDisposedRecord

Class>

fileDisposeRecord

File

SAOfficer

RUClerk

UC006
Activity Diagram for

UC006 <Borrow file>

Figure 2.6.1:

Sequence Diagram

for UC006 <Borrow

file>

State-Transition Diagram

for <borrowFileHandler

Controller>

borrowFileRecord

Staff

UC007

Activity Diagram for

UC007 <View file

access record>

Figure 2.7.1:

Sequence Diagram

for UC007 <View

file access record>

State-Transition Diagram

for <BorrowedFileRecord

Class>

borrowFileRecord

SAOfficer

RUClerk

UC008

Activity Diagram for

UC008 <Detect the late

return of file>

Figure 2.8.1:

Sequence Diagram

for UC008 <Detect

the late return of

file>

State-Transition Diagram

for <BorrowedFileRecord

Class>

borrowFileRecord

Staff

UC009
Activity Diagram for

UC009 <Return file>

Figure 2.9.1:

Sequence Diagram

for UC009 <Return

file>

State-Transition Diagram

for <BorrowedFileRecord

Class>

borrowFileRecord

Staff

Remark: Italic text is cross-reference hyperlink.

Page 1 of 35

1. Introduction

The purpose of the RMD created is used in order for us to describe all the requirements elicit from

the file management system in JKSNJ. This is because we want to create and develop a new file

management system that will be changed from manual system to online system. RMD is best used

for us to document the functional requirements of the system that need to be developed. The

document will specify all the user expectations toward what the software is able to do. In the RMD,

we will use UML Use Case diagram, UC specifications, UML activity diagram, UML domain class

diagram, UML state diagram in order to get a more detailed understanding towards each process in

the system. All the documents related towards the file management system also will be recorded in

the RMD. It is also easy for us to see clearly all the issues and improvements that can be made

towards each process. All the requirements gathered in the RMD are elicited from the stakeholders

of JKSNJ on 11 April 2020. The parties involved for this RMD are Clerk of Record Unit (CRU) and

Syariah Assistant Officer (SAO).

The software product is Mipanzu Online File Management System to replace the current manual

file management system from JKSNJ. This file management system has the function of keeping

track of the location of the files and records. So, when the user wants to borrow the files, they need

to key in the code of the file. All file access information including the user identity, date and time

of borrowing and returning and file code will be stored online therefore it can replace the physical

version of “Kertas Minit”. Therefore, it is easier for SAO as they can know who borrowed the file

and can keep track of the file location.

All the staff need to log in with passwords to verify their identities. Different groups of staff can

access different types of files according to their security levels. When the staff return files, the

system will record the date and time of return. The staff can also report the loss of file in the system.

The system will automatically notify the officers about the late return of files. The system can also

be used to dispose of files, open new files and close files. When they want to dispose of files, they

need the approval from Arkeb Negara Malaysia (ANM). Therefore, with this online version approval

from ANM can be done in minutes instead of hours or even days. The system will notify the officers

of the files that shall be disposed of according to Jabatan Pelupusan Record (JPR).

On the other hand, viewing files and store files does not need approval from ANM, instead the

CRU only needs to update the file status in the system. This system brings benefits to all JKSNJ

staffs, CRU and SAO where they can manage the file records and the daily procedures like

borrowing, returning, disposal and classification of files more efficiently. All the file records can be

backup to secure those records and prevent them from missing. Our goal is to produce an online file

management system that provides one-stop services to all JKSNJ staff with an objective to offer a

path for the users to have an easier work in managing the files and records while maintaining its

integrity.

Page 2 of 35

2. Functional Perspective: Use Case (UC) Documentation (Diagram – UML UCD)

The system features include several diagrams that helps us to create a good to-be system in the

future. There will be several diagrams created and all of them are used to explain all the requirement

and process needed for Mipanzu File Management System. The diagram that will be created are use

case diagram to show interaction between user and all the use case in the system, activity diagram

to documents the action sequences in the use case, domain model to show all the class with their

attributes in the system and state machine diagram to show the state of the class when there is a

trigger that made the state of the class to change if any. For every use case in the use case diagram,

we will create use case description and sequence diagram to see the flow and process for every use

case.

Figure 1: Use Case Diagram for Mipanzu Online File Management System

Page 3 of 35

2.1 Functional Perspective: Use Case (UC) Documentation (Specification – UCS) & UML

Activity Diagram (AD)

Table 2.1 Use Case Specification for UC001 <Open new file>

Use Case ID UC001

Use Case

Name
Open new file

Description
This use case is used by Clerk of the record unit to open new file in Mipanzu

Online File Management System.

Actor(s) Clerks of the record unit

Pre-

condition(s)
1. A valid clerk of the record unit is logged on to the system.

Normal

Flow(s)- NF

1. The clerk of the record unit keys in the file code of the file.

2. The system automatically checks whether the file with the file code

entered exists.

3. If the file exists already, Exception E1 is performed.

4. The system displays message File does not exist.

5. The clerk of the record unit keys in the file code, security level of file,

room number and shelf number of file storage space.

6. The system registers the new file with the file info entered by the clerk

of the record unit.

7. The clerk of the record unit keys in the reference number, title and judge

note of a letter.

8. The system registers the letter in the letter database.

9. The system adds the letter info into the file created in the file database.

10. The system updates the file database.

Exception

Flow(s) - EF

E1: File exists already

1. The system displays the file info.

2. Clerk of record unit keys in the reference number of the letter.

3. The system checks whether the letter with the reference number entered

exists.

4. If the letter exists

4.1. The system displays an error message.

4.2. The use case ends.

5. Else

5.1. The use case resumes step 7.

Post-

condition(s)
1. A new file is successfully created by the Clerks of the record unit.

Page 4 of 35

Figure 2.1: Activity Diagram for UC001 <Open new file>

Page 5 of 35

Figure 2.1.1: Sequence Diagram for UC001 <Open new file>

Page 6 of 35

Table 2.2 Use Case Specification for UC002 <Close file>

Use Case ID UC002

Use Case

Name
Close file

Description
This use case is used by Clerk of the record unit to close file in Mipanzu

Online File Management System.

Actor(s) Clerks of the record unit

Pre-

condition(s)
1. A valid clerk of the record unit is logged on to the system.

Normal

Flow(s)- NF

1. The clerk of record unit keys in the file code of the file.

2. The system automatically checks whether the file with the file code

entered exists.

3. If the file does not exist, Exception E1 is performed.

4. The system displays file exists message.

5. The clerk of the record unit clicks on the close file button.

6. The system updates the file status to “Closed” in the file database.

7. The system automatically registers a new file with the same file info as

the original closed file in the file database.

8. The system sets the subsequent file code to the new file.

9. The system displays the new file code.

10. The clerk of the record unit clicks on delete file to delete the original file

info. [A1]

11. The system deletes the original file info from the file database.

Post-

condition(s)
1. File is successfully closed by the clerk of the record unit

Alternative

Flow(s) - AF

[A1: The clerk of the record unit doesn’t click on delete file button]

1. The use case ends.

Post-

condition(s)
1. File is successfully closed by the clerk of the record unit

Exception

Flow(s) - EF

E1: File does not exist

1. The system displays an error message.

2. The use case ends.

Page 7 of 35

Figure 2.2: Activity Diagram for UC002 <Close file>

Page 8 of 35

Figure 2.2.1: Sequence Diagram for UC002 <Close file>

Page 9 of 35

Table 2.3 Use Case Specification for UC003 <Track file location>

Use Case ID UC003

Use Case

Name
Track file location

Description
This use case is used by Clerk of the record unit to track file location in

Mipanzu Online File Management System.

Actor(s) Clerks of the record unit

Pre-

condition(s)
1. A valid clerk of the record unit is logged on to the system.

Normal

Flow(s)- NF

1. The clerk of record unit keys in the file code of the file.

2. The system automatically checks whether the file with the file code entered

exists.

3. If the file does not exist, Exception E1 is performed.

4. The system displays file exists message.

5. The clerk of the record unit clicks on the search file button.

6. The system displays the location of the file (room number and shelf

number).

Exception

Flow(s) - EF

E1: File does not exist

1. The system displays an error message.

2. The use case ends.

Post-

condition(s)
1. The file location is successfully tracked.

Page 10 of 35

Figure 2.3: Activity Diagram for UC003 <Track file location>

Figure 2.3.1: Sequence Diagram for UC003 <Track file location>

Page 11 of 35

Table 2.4 Use Case Specification for UC004 <Report the loss of file>

Use Case ID UC004

Use Case

Name
Report the loss of file

Description
This use case is used by Clerk of the record unit and JKSNJ staff to report

the loss of file in Mipanzu Online File Management System.

Actor(s)

Clerk of record unit

Syariah Assistant Officer

JKSNJ staff

Pre-

condition(s)
1. A valid clerk of the record unit is logged on to the system.

Normal

Flow(s)- NF

1. The JKSNJ staff keys in the file code.

2. The system automatically checks whether the borrow record with the staff’s

ID and the file code entered exists.

3. If the borrow record does not exist, Exception E1 is performed.

4. The system displays borrow record found message.

5. The JKSNJ staff clicks on the report file lost button.

6. The system updates the borrow status as lost in the file access database.

7. The system updates the file status as lost in the file database.

8. The system sends notification to Syariah Assistant Officer and the clerk of

Record Unit about the file lost with the file code and the info of staff who

lost the file.

Exception

Flow(s) - EF

E1: File does not exist

1. The system displays an error message.

2. The use case ends.

Post-

condition(s)
1. The loss of file is successfully reported.

Page 12 of 35

Figure 2.4: Activity Diagram for UC004 <Report the loss of file>

Page 13 of 35

Figure 2.4.1: Sequence Diagram for UC004 <Report the loss of file>

Page 14 of 35

Table 2.5 Use Case Specification for UC005 <Dispose of file>

Use Case ID UC005

Use Case

Name
Dispose of file

Description
This use case is used by Clerk of the record unit to dispose file in Mipanzu

Online File Management System.

Actor(s)

Clerk of record unit

Syariah Assistant Officer

JKSNJ staff

Pre-

condition(s)
1. A valid clerk of the record unit is logged on to the system.

Normal

Flow(s)- NF

1. The clerk of record unit clicks on “Show outdated files” to display the

files that exceed the maximum storage time.

2. The clerk of the record unit enters the file codes of other damaged files to

be disposed of.

3. The clerk of the record unit clicks on Send to submit the file dispose list

through the system to Syariah Assistant Officer.

4. Syariah Assistant Officer updates the thickness of files from the file

dispose list on the dispose file page.

5. Syariah Assistant Officer applies the file disposal through email to Arkib

Negara Malaysia.

6. Syariah Assistant Officer clicks on Add to Disposal Record to insert the

files from file disposal list to disposal record in the system.

7. Syariah Assistant Officer receives email of file disposal list with approval

status and disposal method from Arkib Negara Malaysia.

8. If the application of file disposal is rejected, Exception E1 is performed.

9. Syariah Assistant Officer updates the file dispose status as “Approved”.

10. Syariah Assistant Officer updates the file disposal method.

11. The clerk of the record unit views the list of files with approved file

disposed status.

12. The clerk of the record unit updates the file dispose date.

13. The clerk of record unit updates the file dispose status as “Disposed”.

Exception

Flow(s) - EF

E1: The application of file disposal is rejected

1. Syariah Assistant Officer updates the file dispose status as “Rejected”.

2. The use case ends.

Post-

condition(s)
1. File is successfully disposed.

Page 15 of 35

Figure 2.5: Activity Diagram for UC005 <Dispose of file>

Page 16 of 35

Figure 2.5.1: Sequence Diagram for UC005 <Dispose of file>

Page 17 of 35

Table 2.6 Use Case Specification for UC006 <Borrow file>

Use Case ID UC006

Use Case

Name
Borrow file

Description
This use case is used by JKSNJ staff to borrow file from Clerk of the record

unit in Mipanzu Online File Management System.

Actor(s)
Clerk of record unit

JKSNJ staff

Pre-

condition(s)
1. A valid JKSNJ staff is logged on to the system.

Normal

Flow(s)- NF

1. The JKSNJ staff keys in the file code.

2. The system automatically checks whether the file with the file code

entered exists.

3. If the file does not exist, Exception E1 is performed.

4. The system automatically checks whether the file with the file code

entered is still available (not borrowed).

5. If the file is not available, Exception E2 is performed.

6. The system automatically checks whether the staff has the privilege to

borrow the file.

7. If the staff does not have the privilege to borrow the file, Exception E3 is

performed.

8. The system creates a borrow ID.

9. The system updates the file access database.

10. The system shows the borrow ID to the staff on the borrow file interface.

11. The clerk of the record unit keys in the borrow ID.

12. The system displays the borrow record.

Exception

Flow(s) - EF

E1: File does not exist

1. The system displays File not found message.

2. The use case ends.

E2: File is not available

1. The system displays the last borrower’s name and staff ID.

2. The system displays File is not available message.

3. The use case ends.

E3: The staff does not have the privilege to borrow the file

1. The system displays message No right to borrow the file.

2. The use case ends.

Post-

condition(s)
1. File is successfully borrowed by the JKSNJ staff.

Page 18 of 35

Figure 2.6: Activity Diagram for UC006 <Borrow file>

Page 19 of 35

Figure 2.6.1: Sequence Diagram for UC006 <Borrow file>

Page 20 of 35

Table 2.7 Use Case Specification for UC007 <View file access record>

Use Case ID UC007

Use Case

Name
View file access record

Description
This use case is used by Clerk of the record unit t view file access record in

Mipanzu Online File Management System.

Actor(s) Clerk of record unit

Pre-

condition(s)
1. A valid Clerk of record unit is logged on to the system.

Normal

Flow(s)- NF

1. The clerk of record unit keys in the file code of the file.

2. The system automatically checks whether the file with the file code

entered exists.

3. If the file does not exist, Exception E1 is performed.

4. The system displays the file access record.

Exception

Flow(s) - EF

E1: File does not exist

1. The system displays an error message.

2. The use case ends.

Post-

condition(s)
2. File access record is successfully viewed by Clerk of the record unit

Page 21 of 35

Figure 2.7: Activity Diagram for UC007 <View file access record>

Page 22 of 35

Figure 2.7.1: Sequence Diagram for UC007 <View file access record>

Page 23 of 35

Table 2.8 Use Case Specification for UC008 <Detect the late return of file>

Use Case ID UC008

Use Case

Name
Detect the late return of file

Description
This use case is used by Clerk of the record unit to detect the late return of

file by JJKSNJ staff in Mipanzu Online File Management System.

Actor(s)
JKSNJ staff

Clerk of the record unit

Pre-

condition(s)
1. A valid Clerk of record unit is logged on to the system.

Normal

Flow(s)- NF

1. The clerk of the record unit clicks on the View File Late Return button.

2. The system displays the list of files that exceeds the return deadline with

their file access record.

3. The system notifies the last borrower of the files in the late return file list.

Post-

condition(s)
1. The list of files that exceed the deadline of return is successfully viewed.

2. The return file notification is successfully sent to the last borrowers.

Page 24 of 35

Figure 2.8: Activity Diagram for UC008 <Detect the late return of file>

Page 25 of 35

Figure 2.8.1: Sequence Diagram for UC008 <Detect the late return of file>

Page 26 of 35

Table 2.9 Use Case Specification for UC009 <Return file>

Use Case ID UC009

Use Case

Name
Return file

Description
This use case is used by JKSNJ staff to return file to Clerk of the record unit

in Mipanzu Online File Management System.

Actor(s)
JKSNJ staff

Clerk of the record unit

Pre-

condition(s)

1. A JKSNJ staff is taking the file that they borrowed to the counter of

JKSNJ.

2. A valid clerk of the record unit is logged on to the system.

Normal

Flow(s)- NF

1. The clerk of the record unit keys in the borrow ID.

2. The system automatically checks whether the borrow record with the

borrow ID entered exists.

3. If the borrow record does not exist, Exception E1 is performed.

4. The system displays the file borrow info.

5. The clerk of the record unit clicks on the Return File button.

6. The system updates the borrow status in the file access database.

Exception

Flow(s) - EF

E1: Borrow Record does not exist

1. The system displays an error message.

2. The use case ends.

Post-

condition(s)
1. File is successfully returned from the JKSNJ staff

Page 27 of 35

Figure 2.9: Activity Diagram for UC009 <Return file>

Page 28 of 35

Figure 2.9.1: Sequence Diagram for UC009 <Return file>

Page 29 of 35

3. Data Perspective: UML Domain Class Diagram (DCD)

 For UML Domain Class Diagram, there are several entities that need to be created in the

system which are Staff, File, borrowedFileRecord, file DisposedRecord and Letter. They are also

two entity that will inherit the staff attributes which are the SAOfficer and RUClerk which is a more

specific position that have their own unique attributes. For relationship, one staff may borrow and

return one or many Files. At the same time, one Staff Administrator Officer (SAOfficer) may

examine and monitor one or many borrowedFileRecord and fileDisposedRecord. Other than that,

one Clerks of the record unit also can open and close one and many Files. File has a composition

relationship with Letter which means that the Letter cannot exist if there are no File. One or many

Files may contain one Letter. File also has an aggregation relationship with borrowedFileRecord

therefore one or many Files will have one or many borrowedFileRecord. Meanwhile,

fileDisposedRecord has an aggregation relationship with file so one or many fileDisposedRecord

will has and list out one or many Files. The aggregation relationship means that the

borrowedFileRecord belongs to File while File belongs to fileDisposedRecord.

Figure 3.0: Domain Class Diagram for Mipanzu Online File Management System

Page 30 of 35

4. Behavioral Perspective: UML State-Transition Diagram (STD)

For UML State-Transition Diagram, there are several entities class that is created for state-

transition diagram which are File, borrowedFileRecord, file DisposedRecord. Not only that, there

are two controller class that have been created as well which is disposeFileHandler and

borrowFileHandler. These classes are chosen because each of these entities have their own states

and will change between states when they are triggered.

Figure 4.1: State-Transition Diagram for <File Class>

Figure 4.1 shows the state transition diagram for file class. A new file will be created first in

the system. Then, the new state will change into letter added state as every file need to include a

letter. Then, the file class will change the state into pending as they will be three different state that

can happen to the file class based on the arguments and condition. The first condition is when the

file status is lost. This will make the file class to change into lost and the state transition will end

there. The second condition is when the file need to be disposed. First, the file state will change into

thickness updated as we need to update the thickness of the file. Then, the file will change it state

into pending as file class need to make sure that the file fulfills the condition to be disposed. Lastly,

the file class will change its state into disposed and the state transition end there. The third condition

made the file class to change its current state into closed. Then, the state will change either to a new

file or deleted. The state change into a new file as the file that is closed will be used to attach to a

new file created. For deleted, the file will be in the deleted state and the state transition end here.

Page 31 of 35

Figure 4.2: State-Transition Diagram for <BorrowedFileRecord Class>

Figure 4.2 shows the state-transition diagram for BorrowedFileRecord class. A new record

will be created first in the system. Then, the new state will change into available state. It will be in

pending state before it will be borrowed. After that, the state will change to borrowed state once it

is borrowed. The state will be pending again when it is borrowed before returning it. If the borrow

file is lost, the state will change to lost state and the state-transition diagram ends here.

Page 32 of 35

Figure 4.3: State-Transition Diagram for <FileDisposedRecord Class>

 For Figure 4.3, a new FileDisposedRecord Class will be created when we add the dispose

file record in the system. This made the state of the class to change into new. Then, the state will be

change into pending as the FileDisposedRecord Class need to make sure that it can be disposed.

After that, the FileDisposedRecord Class will be in two different state which is rejected that means

the disposed file is rejected and approved that means the file is approved to be disposed. For rejected,

the state transition end there meanwhile for approved the state then will change into methodUpdated.

It will update the method and the state will change into pending to make sure the file can be disposed.

Next, the state will change into DisposalDateUpdated to set the date of the file to be disposed and

display the disposed date. Lastly, the state will change into disposed by update the disposed status

and the state transition end here.

Page 33 of 35

Figure 4.4: State-Transition Diagram for <disposedFileHandler Controller>

For Figure 4.4, the state of the disposedFileHandler Controller will change into

DisplayOutDatedFiles. Then, it will change to SubmitFileDisposalList once the user submits it.

After that, it will change to UpdateThickness, then ApplyFileDisposal state is triggered. Once apply,

it goes to CreateFileDisposalRecord state and change to pending after that. If the request is rejected,

it will change to UpdateRejectStatus state and end the transition. On the other hand, it will change

to UpdateApprovedStatus state, then UpdateDisposedDate is triggered after the

DisplayFilesToBeDisposed is triggered. Then the UpdateDisposedStatus is triggered finally, and the

state transition ends here.

Page 34 of 35

Figure 4.5: State-Transition Diagram for <borrowFileHandler Controller>

 For Figure 4.5, the state of the borrowFileHandler Controller will change into SearchFile

when the file code is fill in the system. Then, the state change into pending to check either the file

exists or not. They will be two different states after pending which are DisplayFileNotExist to show

that the file is not exist on the system and DisplayFileExist to show the file exist in the system. For

DisplayFileNotExist, the state transition will end after that meanwhile for DisplayFileExist the state

change into checking to check either the file is available or not. They will be two different states

after checking which are DisplayFileNotAvailable to show that the file is not available right now

and DisplayFileAvailable to show the file is available. For DisplayFileNotAvailable, the state

transition will end after that meanwhile for DisplayFileAvailable the state change into checking to

check either the staff has privilege or not to borrow the file. They will be two different states after

checking which are DisplayStaffNotPrivilege to show that the staff has no privilege and

DisplayStaffPrivelege to show the staff has privilege. For DisplayStaffNotPrivilege, the state

transition will end after that meanwhile for DisplayStaffPrivelege the state change into

CreateBorrowFileRecord to create a new borrowID. Lastly, the state will change into

DisplayBorrowRecord to show the borrow record of the user and then the state transition end.

Page 35 of 35

5. Conclusion

 Based on Phase 2 report, there are many things that we have learned by doing this project.

Firstly, we have learned on how to create a use case diagram. Other than that, we also learn on how

to describe the use case, activity diagram and create a sequence diagram based on every use case.

We also create a domain modal to describe all the entities included in the system. We also create a

state diagram to show all the state and argument that made the state of the entity to change in the

system. Take note that not all the entities have a different state therefore we only included all the

entities that may have any change of state.

 By doing phase 2 report, our group has learned many new things as we need to create many

new diagrams. By creating this diagram, it helps us to organize and understand more about the

information needed to be included in our system. This is because all the detailed information will be

displayed in the diagram. Other than that, we also learn on teamworking skills. This is because they

are many works needed to do in phase 2 so if they are only one person that do the work, we cannot

finish this phase in time. Therefore, we need to divide the work equally. Other than that, besides

doing the work that we need to do, we also always help each other when they are any team members

that has any problem to do their works. We learn that communication is a key when doing the project

with other people.

 So, to conclude the Phase 2 report, they are many things that we have learned by doing this

project and we are glad to learn all the lesson by doing all the works given in phase 2.

6. References

Athuraliya, A. (2021, April 22). What is Sequence Diagram? Complete Guide with Examples.

Retrieved from creately: https://creately.com/blog/diagrams/sequence-diagram-tutorial/

Kruger, N. (2018, October 23). How to Write a Software Requirements Specification (SRS

Document). Retrieved from perforce: https://www.perforce.com/blog/alm/how-write-

software-requirements-specification-srs-document

Malaysia, A. N. (2021, April 1). Dasar Garis Panduan Penilaian dan Pemisahan Rekod Elektronik.

Retrieved from Arkib Negara Malaysia: http://www.arkib.gov.my/web/guest/penilaian-dan-

pemisahan-rekod-elektronik

Sharma, P. (n.d.). System Documentation: Features, Purpose and Contents. Retrieved from

YourArticleLibrary: https://www.yourarticlelibrary.com/management/mis-

management/system-documentation-features-purpose-and-contents-mis/70408

